AI Paves Way for New Medicines

A team of researchers from LMU, ETH Zurich, and Roche Pharma Research and Early Development (pRED) Basel has used artificial intelligence (AI) to develop an innovative method that predicts the optimal method for synthesizing drug molecules. "This method has the potential to significantly reduce the number of required lab experiments, thereby increasing both the efficiency and sustainability of chemical synthesis,” says David Nippa, lead author of the corresponding paper, which has been published in the journal Nature Chemistry. Nippa is a doctoral student in Dr. David Konrad's research group at the Faculty of Chemistry and Pharmacy at LMU and at Roche.

Active pharmaceutical ingredients typically consist of a framework to which functional groups are attached. These groups enable a specific biological function. To achieve new or improved medical effects, functional groups are altered and added to new positions in the framework. However, this process is particularly challenging in chemistry, as the frameworks, which mainly consist of carbon and hydrogen atoms, are hardly reactive themselves. One method of activating the framework is the so-called borylation reaction. In this process, a chemical group containing the element boron is attached to a carbon atom of the framework. This boron group can then be replaced by a variety of medically effective groups. Although borylation has great potential, it is difficult to control in the lab.

Together with Kenneth Atz, a doctoral student at ETH Zurich, David Nippa developed an AI model that was trained on data from trustworthy scientific works and experiments from an automated lab at Roche. It can successfully predict the position of borylation for any molecule and provides the optimal conditions for the chemical transformation. "Interestingly, the predictions improved when the three-dimensional information of the starting materials were taken into account, not just their two-dimensional chemical formulas," says Atz.

The method has already been successfully used to identify positions in existing active ingredients where additional active groups can be introduced. This helps researchers develop new and more effective variants of known drug active ingredients more quickly.

Nippa DF, Atz K, Hohler R, Müller AT, Marx A, Bartelmus C, Wuitschik G, Marzuoli I, Jost V, Wolfard J, Binder M, Stepan AF, Konrad DB, Grether U, Martin RE, Schneider G.
Enabling late-stage drug diversification by high-throughput experimentation with geometric deep learning.
Nat Chem. 2023 Nov 23. doi: 10.1038/s41557-023-01360-5

Most Popular Now

Herefordshire and Worcestershire Health …

Herefordshire and Worcestershire Health and Care NHS Trust has successfully implemented Alcidion's Miya Precision platform to streamline bed management workflow across seven community hospitals in Worcestershire. The trust delivers community...

A Shortcut for Drug Discovery

For most human proteins, there are no small molecules known to bind them chemically (so called "ligands"). Ligands frequently represent important starting points for drug development but this knowledge gap...

New Horizon Europe Funding Boosts Europe…

The European Commission has announced the launch of new Horizon Europe calls, with a substantial funding pool of over €112 million. These calls are aimed primarily at pioneering projects in...

Cleveland Clinic Study Finds AI can Deve…

Cleveland Clinic researchers developed an artficial intelligence (AI) model that can determine the best combination and timeline to use when prescribing drugs to treat a bacterial infection, based solely on...

New AI-Technology Estimates Brain Age Us…

As people age, their brains do, too. But if a brain ages prematurely, there is potential for age-related diseases such as mild-cognitive impairment, dementia, or Parkinson's disease. If "brain age...

With Huge Patient Dataset, AI Accurately…

Scientists have designed a new artificial intelligence (AI) model that emulates randomized clinical trials at determining the treatment options most effective at preventing stroke in people with heart disease. The model...

Radboud University Medical Center and Ph…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Radboud University Medical Center have signed a hospital-wide, long-term strategic partnership that delivers the latest patient monitoring...

GPT-4, Google Gemini Fall Short in Breas…

Use of publicly available large language models (LLMs) resulted in changes in breast imaging reports classification that could have a negative effect on patient management, according to a new international...

ChatGPT fails at heart risk assessment

Despite ChatGPT's reported ability to pass medical exams, new research indicates it would be unwise to rely on it for some health assessments, such as whether a patient with chest...

Study Shows ChatGPT Failed when Challeng…

With artificial intelligence (AI) poised to become a fundamental part of clinical research and decision making, many still question the accuracy of ChatGPT, a sophisticated AI language model, to support...

Virtual Reality Shows Promise in Fightin…

A new study published in JMIR Mental Health sheds light on the promising role of virtual reality (VR) in treating major depressive disorder (MDD). Titled "Examining the Efficacy of Extended...

AXREM and Highland Marketing Partner to …

AXREM represents member companies that collectively provide UK hospitals with most of their diagnostic medical imaging technology, and radiotherapy equipment. The association has seen substantial growth in recent years, with membership...