ALERT

Serious adverse effects resulting from the treatment with thalidomide prompted modern drug legislation more than 40 years ago. Post-marketing spontaneous reporting systems for suspected adverse drug reactions (ADRs) have been a cornerstone to detect safety signals in pharmacovigilance. It has become evident that adverse effects of drugs may be detected too late, when millions of persons have already been exposed.

In this project, an alternative approach for the detection of ADR signals will be developed. Rather than relying on the physician's capability and willingness to recognize and report suspected ADRs, the system will systematically calculate the occurrence of disease (potentially ADRs) during specific drug use based on data available in electronic patient records. In this project, electronic health records (EHRs) of over 30 million patients from several European countries will be available. In an environment where rapid signal detection is feasible, rapid signal assessment is equally important. To rapidly assess signals, a number of resources will be used to substantiate the signals: causal reasoning based on information in the EHRs, semantic mining of the biomedical literature, and computational analysis of biological and chemical information (drugs, targets, anti-targets, SNPs, pathways, etc.).

The overall objective of this project is the design, development and validation of a computerized system that exploits data from electronic healthcare records and biomedical databases for the early detection of adverse drug reactions. The ALERT system will generate signals using data and text mining, epidemiological and other computational techniques, and subsequently substantiate these signals in the light of current knowledge of biological mechanisms and in silico prediction capabilities. The system should be able to detect signals better and faster than spontaneous reporting systems and should allow for identification of subpopulations at higher risk for ADRs.

For further information, please visit:

Project co-ordinator:
ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM

Partners:

  • SOCIETA SERVIZI TELEMATICI SRL
  • UNIVERSIDADE DE AVEIRO
  • THE UNIVERSITY OF NOTTINGHAM
  • PHARMO COOPERATIE UA
  • AARHUS UNIVERSITETSHOSPITAL, AARHUS SYGEHUS
  • UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
  • UNIVERSITAT POMPEU FABRA
  • IRCCS CENTRO NEUROLESI BONINO PULEJO
  • FUNDACIO IMIM
  • LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE
  • ASTRAZENECA AB
  • UNIVERSITE VICTOR SEGALEN BORDEAUX II
  • AGENZIA REGIONALE DI SANITA
  • UNIVERSITA DEGLI STUDI DI MILANO - BICOCCA

Timetable: from 02/2008 – to 07/2011

Total cost: € 5.880.600

EC funding: € 4.500.000

Programme Acronym: FP7-ICT

Subprogramme Area: Advanced ICT for risk assessment and patient safety

Contract type: Collaborative project (generic)

Related news article:

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...