ALERT

Serious adverse effects resulting from the treatment with thalidomide prompted modern drug legislation more than 40 years ago. Post-marketing spontaneous reporting systems for suspected adverse drug reactions (ADRs) have been a cornerstone to detect safety signals in pharmacovigilance. It has become evident that adverse effects of drugs may be detected too late, when millions of persons have already been exposed.

In this project, an alternative approach for the detection of ADR signals will be developed. Rather than relying on the physician's capability and willingness to recognize and report suspected ADRs, the system will systematically calculate the occurrence of disease (potentially ADRs) during specific drug use based on data available in electronic patient records. In this project, electronic health records (EHRs) of over 30 million patients from several European countries will be available. In an environment where rapid signal detection is feasible, rapid signal assessment is equally important. To rapidly assess signals, a number of resources will be used to substantiate the signals: causal reasoning based on information in the EHRs, semantic mining of the biomedical literature, and computational analysis of biological and chemical information (drugs, targets, anti-targets, SNPs, pathways, etc.).

The overall objective of this project is the design, development and validation of a computerized system that exploits data from electronic healthcare records and biomedical databases for the early detection of adverse drug reactions. The ALERT system will generate signals using data and text mining, epidemiological and other computational techniques, and subsequently substantiate these signals in the light of current knowledge of biological mechanisms and in silico prediction capabilities. The system should be able to detect signals better and faster than spontaneous reporting systems and should allow for identification of subpopulations at higher risk for ADRs.

For further information, please visit:

Project co-ordinator:
ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM

Partners:

  • SOCIETA SERVIZI TELEMATICI SRL
  • UNIVERSIDADE DE AVEIRO
  • THE UNIVERSITY OF NOTTINGHAM
  • PHARMO COOPERATIE UA
  • AARHUS UNIVERSITETSHOSPITAL, AARHUS SYGEHUS
  • UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
  • UNIVERSITAT POMPEU FABRA
  • IRCCS CENTRO NEUROLESI BONINO PULEJO
  • FUNDACIO IMIM
  • LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE
  • ASTRAZENECA AB
  • UNIVERSITE VICTOR SEGALEN BORDEAUX II
  • AGENZIA REGIONALE DI SANITA
  • UNIVERSITA DEGLI STUDI DI MILANO - BICOCCA

Timetable: from 02/2008 – to 07/2011

Total cost: € 5.880.600

EC funding: € 4.500.000

Programme Acronym: FP7-ICT

Subprogramme Area: Advanced ICT for risk assessment and patient safety

Contract type: Collaborative project (generic)

Related news article:

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...