Strategic Research and Innovation Roadmap of Trustworthy AI

This document is the first version of the Strategic Research and Innovation Roadmap of the TAILOR project, focussed on Trustworthy Artificial Intelligence (AI) through Learning, Optimization and Reasoning. The project objectives are extremely ambitious, and address topics that are currently very actively investigated. Therefore, defining a roadmap is itself an ambitious goal. We have started analysing many documents containing Roadmaps and Research and Innovation agendas of AI related initiatives (in particular we have analysed the AI4EU Strategic Research and Innovation Agenda and the AI, Data and Robotics PPP Strategic Research Innovation and Deployment Agenda and the AI Watch Index 2021). Also, strategic and roadmapping documents of initiatives from connected fields (e.g., HPC, IoT, Cybersecurity) have been evaluated to find connections and synergies.

As in the Ethical Guidelines for Trustworthy Artificial Intelligence document released in 2019 by the High-Level Expert Group on AI, we need to consolidate ongoing research activities, solid foundational theories, and methodological guidelines that are not yet common in neither industry nor academia. To this end, we have consolidated input coming from scientific and innovation work packages of the TAILOR Network of Excellence, that have released impressive scientific results in one and a half year, but these results still need to be conceptualised, organised, and classified in a rationale shaping future avenues.

Still, in the limited time passed from the project start, the TAILOR consortium has identified interesting research directions and urgent industrial needs. Prioritisation of actions and their timing is not yet perfect, but we are confident that a clear plan will be available for the second and final version of the SRIR.

The document is organised with a short snapshot of the state of European research and innovation landscape. We then define the challenges related to the dimensions of trustworthy AI, namely explainability, safety, robustness, fairness, accountability, privacy and sustainability.

Following TAILOR work packages, learning, optimization and reasoning are considered and several aspects of their integration are analysed: unifying formalisms for integrating reasoning and learning, learning and reasoning on how to act, social perspectives, and AutoAI. A last section is devoted to Foundation models that have been gaining momentum since the TAILOR proposal was written.

Download: Strategic Research and Innovation Roadmap of Trustworthy AI (1.102 KB).

Download from DIGITAL HEALTH NEWS: Strategic Research and Innovation Roadmap of Trustworthy AI (1.102 KB).

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...