Strategic Research and Innovation Roadmap of Trustworthy AI

This document is the first version of the Strategic Research and Innovation Roadmap of the TAILOR project, focussed on Trustworthy Artificial Intelligence (AI) through Learning, Optimization and Reasoning. The project objectives are extremely ambitious, and address topics that are currently very actively investigated. Therefore, defining a roadmap is itself an ambitious goal. We have started analysing many documents containing Roadmaps and Research and Innovation agendas of AI related initiatives (in particular we have analysed the AI4EU Strategic Research and Innovation Agenda and the AI, Data and Robotics PPP Strategic Research Innovation and Deployment Agenda and the AI Watch Index 2021). Also, strategic and roadmapping documents of initiatives from connected fields (e.g., HPC, IoT, Cybersecurity) have been evaluated to find connections and synergies.

As in the Ethical Guidelines for Trustworthy Artificial Intelligence document released in 2019 by the High-Level Expert Group on AI, we need to consolidate ongoing research activities, solid foundational theories, and methodological guidelines that are not yet common in neither industry nor academia. To this end, we have consolidated input coming from scientific and innovation work packages of the TAILOR Network of Excellence, that have released impressive scientific results in one and a half year, but these results still need to be conceptualised, organised, and classified in a rationale shaping future avenues.

Still, in the limited time passed from the project start, the TAILOR consortium has identified interesting research directions and urgent industrial needs. Prioritisation of actions and their timing is not yet perfect, but we are confident that a clear plan will be available for the second and final version of the SRIR.

The document is organised with a short snapshot of the state of European research and innovation landscape. We then define the challenges related to the dimensions of trustworthy AI, namely explainability, safety, robustness, fairness, accountability, privacy and sustainability.

Following TAILOR work packages, learning, optimization and reasoning are considered and several aspects of their integration are analysed: unifying formalisms for integrating reasoning and learning, learning and reasoning on how to act, social perspectives, and AutoAI. A last section is devoted to Foundation models that have been gaining momentum since the TAILOR proposal was written.

Download: Strategic Research and Innovation Roadmap of Trustworthy AI (1.102 KB).

Download from DIGITAL HEALTH NEWS: Strategic Research and Innovation Roadmap of Trustworthy AI (1.102 KB).

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...