Strategic Research and Innovation Roadmap of Trustworthy AI

This document is the first version of the Strategic Research and Innovation Roadmap of the TAILOR project, focussed on Trustworthy Artificial Intelligence (AI) through Learning, Optimization and Reasoning. The project objectives are extremely ambitious, and address topics that are currently very actively investigated. Therefore, defining a roadmap is itself an ambitious goal. We have started analysing many documents containing Roadmaps and Research and Innovation agendas of AI related initiatives (in particular we have analysed the AI4EU Strategic Research and Innovation Agenda and the AI, Data and Robotics PPP Strategic Research Innovation and Deployment Agenda and the AI Watch Index 2021). Also, strategic and roadmapping documents of initiatives from connected fields (e.g., HPC, IoT, Cybersecurity) have been evaluated to find connections and synergies.

As in the Ethical Guidelines for Trustworthy Artificial Intelligence document released in 2019 by the High-Level Expert Group on AI, we need to consolidate ongoing research activities, solid foundational theories, and methodological guidelines that are not yet common in neither industry nor academia. To this end, we have consolidated input coming from scientific and innovation work packages of the TAILOR Network of Excellence, that have released impressive scientific results in one and a half year, but these results still need to be conceptualised, organised, and classified in a rationale shaping future avenues.

Still, in the limited time passed from the project start, the TAILOR consortium has identified interesting research directions and urgent industrial needs. Prioritisation of actions and their timing is not yet perfect, but we are confident that a clear plan will be available for the second and final version of the SRIR.

The document is organised with a short snapshot of the state of European research and innovation landscape. We then define the challenges related to the dimensions of trustworthy AI, namely explainability, safety, robustness, fairness, accountability, privacy and sustainability.

Following TAILOR work packages, learning, optimization and reasoning are considered and several aspects of their integration are analysed: unifying formalisms for integrating reasoning and learning, learning and reasoning on how to act, social perspectives, and AutoAI. A last section is devoted to Foundation models that have been gaining momentum since the TAILOR proposal was written.

Download: Strategic Research and Innovation Roadmap of Trustworthy AI (1.102 KB).

Download from DIGITAL HEALTH NEWS: Strategic Research and Innovation Roadmap of Trustworthy AI (1.102 KB).

Most Popular Now

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...