What the Radiologist should Know about Artificial Intelligence - An ESR White Paper

This paper aims to provide a review of the basis for application of AI in radiology, to discuss the immediate ethical and professional impact in radiology, and to consider possible future evolution. Even if AI does add significant value to image interpretation, there are implications outside the traditional radiology activities of lesion detection and characterisation. In radiomics, AI can foster the analysis of the features and help in the correlation with other omics data. Imaging biobanks would become a necessary infrastructure to organise and share the image data from which AI models can be trained. AI can be used as an optimising tool to assist the technologist and radiologist in choosing a personalised patient's protocol, tracking the patient's dose parameters, providing an estimate of the radiation risks. AI can also aid the reporting workflow and help the linking between words, images, and quantitative data. Finally, AI coupled with CDS can improve the decision process and there by optimise clinical and radiological workflow.

This paper was prepared by Prof. Emanuele Neri (Chair of the ESR eHealth and Informatics Subcommittee), Prof. Nandita de Souza (Chair of the ESR European Imaging Biomarkers Alliance - EIBALL Subcommittee), and Dr. Adrian Brady (Chair of the ESR Quality, Safety and Standards Committee), on behalf of and supported by the eHealth and Informatics Subcommittee of the European Society of Radiology (ESR).

The authors gratefully acknowledge the valuable contribution to the paper of Dr. Angel Alberich Bayarri, Prof. Christoph D. Becker, Dr. Francesca Coppola, and Dr. Jacob Visser, as members of the ESR eHealth and Informatics Subcommittee.

The paper was approved by the ESR Executive Council in February 2019.

Download: What the Radiologist should Know about Artificial Intelligence - An ESR White Paper (.pdf, 546 KB).

Download from eHealthNews.eu: What the Radiologist should Know about Artificial Intelligence - An ESR White Paper (.pdf, 546 KB).

Most Popular Now

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...