I-Know

I-Know is a knowledge discovery IT -based tool designed to aid early stroke diagnosis, stroke treatment, drug development and identification of risk factors as targets in disease prevention for the benefit of European industry and citizens.

Acute stroke is a major socioeconomic burden in EU. The disabilities following the disease develop rapidly and prompt treatment of patients is imperative. Currently a drug dissolving the blood clot (rtPA - thrombolysis) is the only established treatment, but this is only implemented at highly specialised centres. There is consequently a strong geographical inequality in the availability of this treatment - nationally and internationally within EU.

At the same time there is an intense search by pharmaceutical industry and academic biomedical research to identify drugs that will stop the tissue damage progressing after acute stroke.

The knowledge discovery tool, I-Know will:

  • Provide instant, user-friendly ITbased diagnosis and therapeutic guidance, reducing the infrastructural, economic and educational barriers currently hindering advanced stroke treatment at less specialised units.
  • Use advanced data mining techniques to model disease progression based on large multinational databases providing state-of-theart diagnosis of every EU citizen irrespective of knowledge barriers.
  • Provide a platform for modeling beneficial or adverse effects recorded during clinical trials, allowing optimal use of preclinical data in subsequent individualized patient management.
  • Be designed to integrate data across descriptive levels to devise disease models that will bring scientific progress to stroke research.

For further information, please visit:
http://www.cfin.au.dk

Project co-ordinator:
Dept. Neuroradiology, Aarhus Sygehus, Aarhus University Hospital, (DK)

Partners:

  • Institut National de la Santé et de Recherche Medicale (FR)
  • Université Claude Bernard (FR)
  • Fundació Privada Institut d'Investigació Biomédica de Girona (SP)
  • University of Cambridge (UK)
  • Universitätsklinikum Hamburg-Eppendorf (DE)
  • Universitätsklinikum Freiburg für die Medizinische Fakultät der Albert-Ludwigs-Universität (DE)
  • Systematic Software Engineering A/S (DK)
  • Dimac A/S (DK)

Timetable: from 05/06 – to 04/09

Total cost: € 3.876.347

EC funding: € 3.092.810

Instrument: STREP

Project Identifier: IST-2004-027294

Source: FP6 eHealth Portfolio of Projects

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...