IBM Research Unveils 3D Avatar to Help Doctors Visualize Patient Records and Improve Care

IBMIBM (NYSE: IBM) researchers unveiled a prototype visualization software that allows doctors to interact with medical data the same way they interact with their patients: by looking at the human body. Created at IBM's Zurich Research Lab, the technology uses an avatar - a 3D representation of the human body - to allow doctors to visualize patient medical records in an entirely new way. Called the Anatomic and Symbolic Mapper Engine (ASME), this innovative visualization method allows a doctor to click with the computer mouse on a particular part of the avatar "body" to trigger a search of medical records to retrieve relevant information.

"It's like Google Earth for the body," said IBM Researcher Andre Elisseeff, who leads the healthcare projects at IBM's Zurich lab. "In hopes of speeding the move toward electronic healthcare records, we've tried to make information easily accessible for healthcare providers by combining medical data with visual representation, making it as simple as possible to interact with data that can improve patient care."

IBM's 3D VISUALIZATION SOFTWARE GETS UNDER THE SKIN: IBM Researchers created software that lets doctors search specific parts of the body, even getting a view under the skin to see the cardiovascular or muscular system. The patient records are organized visually; when a patient complains of knee pain, for example, the doctor clicks on that body part and sees all relevant records.For example, when a patient visits a doctor's office today and complains of back pain, the doctor will ask the patient about any history the patient can recall, do tests, and visually and physically examine the patient. After that, the doctor will usually sort through stacks of paper records but will most likely not have access to the full patient history and similar complaints.

The ASME system will allow doctors to "click" on different parts of the 3-D avatar of the human body - for example, the spine - and instantly see all the available medical history and information related to that patient's spine, including text entries, lab results and medical images such as radiographs or MRIs. Or the doctor might be interested only in information related to a particular part of the spine; in this case, the practitioner can zoom in, narrowing the search parameters by time or other factors.

Using advanced machine learning and state-of-the-art 3D modeling techniques, the IBM researchers overcame key technical challenges including integrating heterogeneous data sources and complex text-based information -- so-called unstructured data -- and linking that data to the anatomical model in a meaningful and easy-to-navigate way. ASME also uses SNOMED, the systemized nomenclature of medicine that encompasses approximately 300,000 medical terms, to create a bridge between graphical concepts and text documents.

ASME is the result of a collaboration between IBM Denmark and IBM Research. By bringing its sales force and its research organization together, IBM has created a unique innovation team with deep understanding of the industry and leading technical expertise.

The need for Electronic Health Records
Advances in technology are driving great breakthroughs in medical treatment and care, but today's health records do not fully take advantage of what is available. Patient records are static and flat-consisting either of unstructured data written on paper or more structured text information stored in various databases. In either case, the records provide disparate bits and pieces of information on diagnoses and diseases; accessing a comprehensive history proves to be an enormous challenge.

Because the industry is still in the very early stages of achieving a fully functional electronic health records (eHR) system, which would enable the sharing of information among hospitals, clinics and other providers in a way that protects individual patient privacy, most medical professionals prefer to use paper records or their own proprietary system for keeping eHRs. But what if a system could bring together all these flat and static pieces to derive a dynamic and full picture of a patient's health status in real-time? And what if the system were to provide this information in an intuitive and easy-to-use way? With ASME, IBM researchers have now presented such a system -- ASME allows navigating through a virtual map of the human body, an intuitive approach for healthcare professionals.

Building on previous IBM healthcare IT milestones, ASME is the medical information hub that semantically integrates information from IBM's Health Information Exchange (HIE) with a virtual model of the human body.

Moving forward, the researchers will explore integrating speech technology into ASME.

Related news articles:

For more information about IBM, please visit www.ibm.com.

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...