ImmunoGrid

The project will focus on establishing an infrastructure for the simulation of the immune system that integrates processes at molecular, cellular, and organ levels. It will be designed for applications that support clinical outcomes such as design of vaccines and immunotherapies and optimization of immunization protocols.

The immune system is a complex and adaptive learning system which has evolved to defend the individual. It has multiple levels (molecular, cellular, organ and tissue, organism, and organism-toorganism) and is also combinatorial in nature with a large number of products.

Immune intervention, such as vaccination, is the most effective method for the control of disease and the greatest achievements include eradication of smallpox, near-elimination of polio, and savings of some 170 million person-years. Vaccination has been used in the control of over two dozen diseases by the 50 or so successful vaccines which have been developed to date.

Large-scale studies of the immune system, also known as immunomics, is the key factor driving the current wave in vaccine development. The main objectives of ImmunoGrid are to:

  • Create computational models for the real-size human immune system (the Virtual Human Immune System Simulator).
  • Standardize immune system concepts, bioinformatics tools and information resources to enhance the computational models for preclinical and clinical applications.
  • Validate these models with experimental data and disseminate the tools developed to users such as vaccine and immunotherapy researchers and developers.

For further information, please visit:

Project co-ordinator:
The Interuniversity Consortium of Northeastern Italy for Automated Computing (CINECA) (IT)

Partners:

  • National Council of Research - CNR (IT),
  • National Council of Scientific Research - CNRS (FR),
  • University of Queensland (AU),
  • Technical University of Denmark (DK),
  • Birkbeck College, Univ. of London (UK),
  • University of Bologna (IT),
  • University of Catania (IT)

Timetable: from 02/06 – to 01/09

Total cost: € 2.622.274

EC funding: € 1,951,042

Instrument: STREP

Project Identifier: IST-2004-028069

Source: FP6 eHealth Portfolio of Projects

Most Popular Now

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...