NVIDIA Dramatically Accelerates the Search for a Cure

Stanford University's distributed computing program Folding@home has become a major force in researching cures to life-threatening diseases such as cancer, cystic fibrosis, and Parkinson's disease by combining the computing horsepower of millions of processors to simulate protein folding. The Folding@home project is the latest example in the expanding list of non-gaming applications for graphics processing units (GPU). By running the Folding@home client on an NVIDIA® GeForce® GPU, protein-folding simulations can be done 140 times faster than on some of today's traditional CPUs.

"The impact of GeForce GPUs on protein folding simulations was immediate and dramatic," said Vijay Pande, associate professor of chemistry, Stanford University and director of the Folding@home project. "Teams that are folding with GeForce GPUs are seeing their production skyrocket. Applying that kind of processing power to Folding@home changes the whole dynamic of the project and could significantly reduce the time it takes to carry out our biomedical research."

The Folding@home project has amassed a large following of computer enthusiasts who compete in teams to churn through as many data units as possible. Their unofficial stats are organised by and displayed at ExtremeOverclocking.com. It took the NVIDIA internal folding team only two weeks to move ahead of 90% of all teams, using only 10 machines. After expanding the team to include more GPUs, the NVIDIA team has moved inside the top 0.1% of teams in all-time total production in less than a month.

Other folding teams are also seeing their status rise as a result of the NVIDIA Folding@home client.

"We saw the completed work double for our PC Games Hardware Folding team as a result of many team members installing the NVIDIA Folding client," said Carsten Spille, editor at PC Games Hardware. "We are passing many teams every day and we have finally reached our goal of being one of the top 100 folding teams in the world."

Protein Folding
Proteins assemble themselves through a process biologists call "folding". The goal of the Folding@home project is to understand protein folding, misfolding, and related diseases. Folding@home simulates protein folding in order to understand how proteins fold so quickly and reliably and to learn about what happens when proteins do not fold correctly. Diseases such as Alzheimer's disease, cystic fibrosis, BSE (Mad Cow disease), an inherited form of emphysema, and many cancers are believed to result from protein misfolding.

About NVIDIA
NVIDIA (Nasdaq: NVDA) is the world leader in visual computing technologies and the inventor of the GPU, a high-performance processor which generates breathtaking, interactive graphics on workstations, personal computers, game consoles, and mobile devices. NVIDIA serves the entertainment and consumer market with its GeForce products, the professional design and visualisation market with its Quadro® products, and the high-performance computing market with its Tesla™ products. NVIDIA is headquartered in Santa Clara, California, and has offices throughout Asia, Europe, and the Americas. NVIDIA's inaugural NVISION 08 conference will be held August 25-27, 2008 in San Jose, California. For more information, visit www.nvidia.co.uk and www.nvision2008.com.

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...