Abbott Announces New Data that Shows Artificial Intelligence Technology can Help Doctors Better Determine which Patients are Having a Heart Attack

AbbottAbbott (NYSE: ABT) announced that new research, published in the journal Circulation, found its algorithm could help doctors in hospital emergency rooms more accurately determine if someone is having a heart attack or not, so that they can receive faster treatments or be safely discharged. (1)

In this study, researchers from the U.S., Germany, U.K., Switzerland, Australia and New Zealand looked at more than 11,000 patients to determine if Abbott's technology developed using artificial intelligence (AI) could provide a faster, more accurate determination that someone is having a heart attack or not. The study found that the algorithm provided doctors a more comprehensive analysis of the probability that a patient was having a heart attack or not, particularly for those who entered the hospital within the first three hours of when their symptoms started.

"With machine learning technology, you can go from a one-size-fits-all approach for diagnosing heart attacks to an individualized and more precise risk assessment that looks at how all the variables interact at that moment in time," said Fred Apple, Ph.D., Hennepin HealthCare/ Hennepin County Medical Center, professor of Laboratory Medicine and Pathology at the University of Minnesota, and one of the study authors. "This could give doctors in the ER more personalized, timely and accurate information to determine if their patient is having a heart attack or not."

Removing the barriers for determining the presence of a heart attack

A team of physicians and statisticians at Abbott developed the algorithm* using AI tools to analyze extensive data sets and identify the variables most predictive for determining a cardiac event, such as age, sex and a person's specific troponin levels (using a high sensitivity troponin-I blood test**) and blood sample timing.

Today, when a person enters the emergency room with symptoms of a heart attack, doctors often use a clinical assessment, an electrocardiogram (EKG) and troponin blood tests at set intervals to determine if the patient is having a heart attack or not. The algorithm is designed to help address two barriers that exist today for doctors looking for more individualized information when diagnosing heart attacks:

  • International guidelines for using high sensitive troponin tests currently do not always account for personal factors, such as age and sex, which could impact test results. For instance, women may not produce as much of the troponin protein as men and their heart attacks could go undiagnosed.
  • The guidelines also recommend that doctors carry out troponin testing at fixed times over a period of up to 12 hours. However, these time periods do not take into consideration a person's age or sex, and puts a patient into a one-size-fits-all algorithm, rather than having an algorithm that accounts for factors specific to each person.

The algorithm used in the study takes into consideration the patient's age, sex and the dynamics of the troponin blood test results over time. Researchers found that when this information is combined through the power of computation, the algorithm has the potential to give doctors more confidence in the results to help rule out a heart attack and safely discharge that person or diagnose that a heart attack has occurred.

"As doctors are bombarded with data and information, this new algorithm takes several of these variables and uses computational power to more accurately provide a probability of that person having a heart attack," said Agim Beshiri, M.D., one of the inventors of the algorithm and senior medical director, global medical and scientific affairs, Diagnostics, Abbott. "In the future, you could imagine using this technology to develop algorithms that help doctors not only better determine if their patient is having a heart attack or not, but potentially before a heart attack occurs."

Abbott is continuously utilizing new technologies, such as AI and machine learning, to create innovative solutions in healthcare.

* The algorithm used is for research purposes only and is not commercially available.
** Abbott's High Sensitive Troponin-I test is not commercially available in the U.S.

About Abbott

Abbott is a global healthcare leader that helps people live more fully at all stages of life. Our portfolio of life-changing technologies spans the spectrum of healthcare, with leading businesses and products in diagnostics, medical devices, nutritionals and branded generic medicines. Our 103,000 colleagues serve people in more than 160 countries.

1. Than, MP et al. Circulation. 2019; published online Sept 10. doi: 10.1161/CIRCULATIONAHA.119.041980

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...