Open Call SC1-DTH-12-2020: Use of Real-World Data to Advance Research on the Management of Complex Chronic Conditions

European CommissionThe number of people with chronic illness is growing and almost half of them have multiple chronic conditions. Patients with complex chronic conditions (CCCs) have chronic multi-morbidities or chronic disease complications that require the attention of multiple health care providers or facilities as well as home-based care. A patient with CCC presents to the health care system with unique constellation of needs, disabilities, or functional limitations.

Managing patients with complex chronic conditions therefore needs approaches that ensure multi-disciplinary, personalised and well accepted by the patient ways of care and monitoring.

The controlled randomised clinical trials on chronic diseases provide important information that can be translated in the daily clinical practice, but they often do not comprise sufficient breadth and depth commensurate to the complexity of diseases, and to the degree of personalisation of treatment needed.

Real World Data (referring specifically to any type of data not collected in a randomised clinical trial) can complement these to fill the knowledge gap between controlled clinical trials results and clinical practice needs in real environments. They can provide new insights into disease patterns and help improve the safety and effectiveness of health interventions.

Tapping into this rich resource of 'real world data' issued from daily clinical practice, either collected on a permanent/regular basis by public bodies or through devices and mobile applications, and smartly assembled in combination with clinical studies, should boost both output and relevance of controlled clinical research results.

Scope

The topic will support clinical research integrating Real World Data from clinical practice or from patient's daily life and linking them with data collected with a research purpose if relevant.).

The research focus will be on the use of real world data, either newly acquired or from existing sources (such as data from clinical professional societies/associations, cohorts, registers, biobanks or collected through genome research initiatives) to improve the clinical management of adults with complex chronic conditions. The use of new technologies for data analytics and interpretation such as artificial intelligence and computer modelling are encouraged.

The proposed intervention should allow better treatment or monitoring of the person and thus changes in disease progression and/or therapy response. Quality of life, patient safety, psychosocial aspects and well-being are important determinants of complex health conditions and should be addressed whenever relevant. The research should also assess the potential and use of RWD for different health authorities like regulators of safety and quality or health technology assessment bodies. Nevertheless, research has to take duly into account sex and gender differences.

The proposed intervention must add clinical value as well as societal benefits and show feasibility and sustainability in real-life settings. In order to ensure acceptability and sustainability of the intervention early involvement of patients and care providers in the design of the research is considered essential. Similarly, proposals should duly take into account the diversity of health systems in different regions of Europe.

Data protection, data privacy and ethical issues have to be carefully considered as personal data from different sources are to be linked in the course of the proposed research. Data sets assembled under the project, including the linkage to ‘real world data’ should be preserved in a sustainable and accessible way so as to enable future research on the targeted CCC, thus contributing to the overall imperative of Open Science.

Research that focuses on self-management only is not in the scope of this topic. Research on rare and/or infectious diseases are supported through other sections of the programme and are excluded from the scope of this topic.

The Commission considers that proposals requesting a contribution from the EU of between EUR 4 and 6 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.

Expected Impact

  • Demonstrate the potential of the use multi-disciplinary multi-source Real World Data to advance clinical research on complex chronic conditions;
  • Demonstrate potential and use of RWD, in particular RWD from disease-specific professional societies/associations, by health authorities to understand safety, quality and effectiveness of therapies;
  • Improve the clinical outcomes as well as quality of life of patients living with CCCs;
  • Advance the understanding of management of complex diseases including the interdependence of co-morbidities, thus underpinning evidence based therapies and prognostic approaches;
  • Further development of new technological tools and platforms for advanced data management;
  • Contribution to the cross-border health data exchange and to the goals of the Digital Single Market.

Opening date: 04 July 2019

Deadline: 07 April 2020 17:00:00 Brussels time

Deadline Model: single-stage

Type of action: Research and Innovation Action (RIA)

For topic conditions, documents and submission service, please visit:
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/sc1-dth-12-2020

PS: Find your partners or consortia preparing a project proposal
If you need help to identify a potential partner with particular competences, facilities or experience, please join and explore (HEALTH IT) SPACE www.healthitspace.eu.

Post your job offer now to start hiring the best digital health talent! For further information, please contact us.

Most Popular Now

Almost All Leading AI Chatbots Show Sign…

Almost all leading large language models or "chatbots" show signs of mild cognitive impairment in tests widely used to spot early signs of dementia, finds a study in the Christmas...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Emotional Cognition Analysis Enables Nea…

A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson's disease with near-perfect accuracy, simply by analyzing brain...

New Recommendations to Increase Transpar…

Patients will be better able to benefit from innovations in medical artificial intelligence (AI) if a new set of internationally-agreed recommendations are followed. A new set of recommendations published in The...

Digital Health Unveils Draft Programme f…

18 - 19 March 2025, Birmingham, UK. Digital Health has unveiled the draft programme for its Rewired 2025 event which will take place at the NEC in Birmingham in March next...

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...