Royal Philips Electronics Announced the euHeart Project

Article of the Month!

Royal Philips ElectronicsRoyal Philips Electronics (NYSE: PHG; AEX: PHI) announced that it will lead a new European Union (EU) funded research project called euHeart, which is aimed at improving the diagnosis, therapy planning and treatment of cardiovascular disease - one of the biggest causes of mortality in the western world.

By targeting the diagnosis and treatment phases of the care cycles for heart conditions such as heart failure, coronary artery disease, heart rhythm disorders, and congenital heart defects, the euHeart project complements the recently announced HeartCycle project, also led by Philips, which focuses on the long term management of chronic heart disease patients.

The euHeart consortium aims to develop advanced computer models of the human heart that can be personalized to patient-specific conditions using clinical data from various sources, such as CT (Computed Tomography) and MRI (Magnetic Resonance Imaging) scans, measurements of blood flow and blood pressure in the coronary arteries (which feed the heart muscles) and ECGs (Electrocardiograms).

These computer models will integrate the behavior of the heart and the aorta at molecular, cellular, tissue and organ-level. They will also incorporate clinical knowledge about how cardiovascular disease disturbs the correct functioning of the heart at these levels. As a result, it may be possible to develop simulation tools that doctors can use to predict the outcome of different types of therapy, and because the models will be personalized to individual patients, the therapy could be equally personalized.

"euHeart is a very exciting project that will bring together the latest advances in modeling and computing to improve the care of patients with heart disease," says Professor Reza Razavi, the Project's Clinical Coordinator who is also Professor of Paediatric Cardiovascular Science and Head of the Division of Imaging Sciences at King’s College London (London, United Kingdom). "It may ultimately allow us to select and optimize the best treatment for individual patients."

As an example, one way of treating heart rhythm disorders is a minimally invasive procedure known as radio-frequency ablation. During this procedure, a catheter is inserted into the patient’s heart and the tissue responsible for propagating abnormal electrical signals through the heart muscle is destroyed using heat from a radio-frequency field generated at the tip of the catheter. At the moment, doctors have to rely on their experience to decide which areas of tissue to destroy – a task that is complicated by the fact that the electrical activity in every patient's heart is subtly different. With the aid of a computerized model that reflects the patient's unique heart structure and function, doctors may be able to test the results of destroying different areas of tissue before they have to operate on the patient.

"The development of computer models that integrate structural and functional information of the heart and then personalize it to individual patients is a mammoth task that will require the multi-disciplinary effort of researchers with strong know-how in biophysical modeling and image processing, clinical experts, and engineers in the device and imaging industries," commented Henk van Houten, senior vice president of Philips Research and head of the Healthcare Research program. "In the euHeart project we are confident that we have brought together the necessary expertise and that we can make a real contribution to improving the treatment of one of the world's killer diseases."

The euHeart consortium comprises public and private partners from 16 research, academic, industrial and medical organizations from six different European countries. It will run for four years and has a budget of approximately EUR 19 million, of which approximately EUR 14 million will be provided by the European Union as part of the EU 7th Framework Program. The project forms part of the Virtual Physiological Human (VPH) initiative - a collaborative effort that aims to produce a computer model of the entire human body so that it can be investigated as a single complex system.

Within the multidisciplinary euHeart consortium, the University of Oxford (Oxford, UK) is the scientific coordinator of the project, while King's College London (London, UK) leads the clinical program.

euHeart Consortium membership (in alphabetical order):
Academic Medical Center Amsterdam (Netherlands); Berlin Heart (Germany); Deutsches Krebsforschungszentrum (Germany); HemoLab (Netherlands); Hospital Clínico San Carlos de Madrid Insalud (Spain); Institut National de la Santé et de la Recherche Médicale (France); Institut National de Recherche en Informatique et en Automatique (France): King's College London (United Kingdom); Philips Healthcare (Netherlands, Spain); Philips Research (Germany); PolyDimensions (Germany); Universitat Pompeu Fabra (Spain); University of Karlsruhe (Germany); University of Oxford (United Kingdom); University of Sheffield (United Kingdom); Volcano Europe SA/NV (Belgium).

Related news articles:

More information on the euHeart project:
http://www.research.philips.com/newscenter/
backgrounders/080820-euheart.html

More information on the parallel HeartCycle project:
http://www.research.philips.com/technologies/
healthcare/homehc/heartcycle/heartcycle-gen.html

About Royal Philips Electronics
Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified Health and Well-being company, focused on improving people’s lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of “sense and simplicity”. Headquartered in the Netherlands, Philips employs approximately 133,000 employees in more than 60 countries worldwide. With sales of EUR 27 billion in 2007, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in flat TV, male shaving and grooming, portable entertainment and oral healthcare. News from Philips is located at www.philips.com/newscenter.

Most Popular Now

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...