Philips MRI Scanner to be Used in Prestigious 6 Year Project

Royal Philips ElectronicsScientists from Guys' and St Thomas', King's College, London, Imperial College, London and University of Oxford will use a Philips state-of-the-art MRI scanner combined with specially developed imaging techniques to investigate the wombs of pregnant women and image their babies' brains, even while the fetuses are moving.

To deliver this ambitious project new MRI facilities have been installed at St Thomas' Hospital, creating a dedicated imaging suite, integrated with the neonatal critical care unit and a wide bore scanner for fetal imaging. Philips Healthcare has supplied an Achieva TX MRI system and an Avalon fetal monitor, and will be providing ongoing support to ensure the systems consistently provide peak performance.

The researchers will use the advanced imaging techniques to map how the human brain grows and forms connections, with the aim of mapping out for the first time how the brain assembles itself, and also observe how brain connections and patterns of activity, seen on older subjects, emerge as babies grow in the womb and just after birth. Up to 1,500 subjects will be studied to examine both normal development and also explore early signs of disabilities such as autism and attention deficit disorders. The objective is to create a "connectome", a kind of wiring diagram of the fetal and infant brain showing the formation of brain structures such as the cerebral cortex, where 'thinking' occurs, or the hippocampus, which is central to memory, and the connections between them.

Professor David Edwards, director of the Centre for the Developing Brain at King's said "We want to create a series of atlases showing the human brain at different stages in development. Eventually, we hope to have enough data to compare the brains of children who go on to develop normally with those who develop conditions like autism and attention deficit disorders, so that we can see if such conditions have their origins in the way the brain developed in the womb."

MRI is already used to image brains of unborn babies, often after ultrasound exams have shown potential abnormalities, and it is also increasingly used to help in the management of premature babies and other vulnerable infants. The information provided is becoming more and more important as new treatments are developed that can improve the outcome for babies at risk of long-term brain damage occurring around the time of birth. However, while established imaging techniques provide detailed anatomical information and reveal if there is structural brain damage, mapping of brain connectivity and emerging brain function is a task at the limits of current capabilities. The team will, therefore, have to develop both advanced imaging methods and new ways to analyze the images to extract the vital connectome information.

Jo Hajnal, professor of imaging science at King's, a physicist who specializes in imaging subjects who cannot remain still while they are scanned said "We will scan about 1,500 children; about 500 will be fetuses, another 500 will be new-born normal babies, and the rest will be at-risk babies, including 200 premature babies and about 300 babies identified as being at higher risk of development autism."

Professor Hajnal goes on "The fetal scans let us look back into the womb and see how the brain assembles itself, while the normal babies will give us a sense of just what a brain looks like, and how it works when a person enters the world. We can compare these images with what we see in the brains of at-risk babies and maybe find out what makes them different."

Once the images have been collected, advanced computational analysis methods will be developed and applied to extract connectome information. This critical part of the project will be led by Professor Daniel Rueckert, Department of Computing, Imperial College London, and Professor Steve Smith of Oxford University's centre for Functional MRI of the Brain.

About Royal Philips Electronics
Royal Philips (NYSE: PHG, AEX: PHIA) is a diversified health and well-being company, focused on improving people's lives through meaningful innovation in the areas of Healthcare, Consumer Lifestyle and Lighting. Headquartered in the Netherlands, Philips posted 2012 sales of EUR 24.8 billion and employs approximately 116,000 employees with sales and services in more than 100 countries. The company is a leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as male shaving and grooming and oral healthcare.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...