Philips Supports Tampere Heart Hospital in Finland to Decarbonize its Clinical Operations

PhilipsRoyal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced the completion of a comprehensive hospital-wide analysis of Tampere Heart Hospital - Tampere University Hospital's (Finland) environmental sustainability, including a deep assessment of the interventional cardiology space and evaluation of its carbon footprint. The results of the analysis have been translated into a joint action plan that will help Heart Hospital accelerate its decarbonization efforts in line with Finland’s world-leading commitment to reach net zero emissions by 2035.

"Sustainability is an integral part of Tampere Heart Hospital strategy. We are aware that hospitals generate a significant amount of waste daily and consume a lot of energy. We want to contribute to the development of environmental responsibility in healthcare," said Pasi Lehto CEO and Chief Medical Officer at Heart Hospital.

"We want to ascertain where we are now and how we can further accelerate our transition towards net zero," said Aki Haukilahti, CFO at Tampere Heart Hospital. “Our long-standing relationship with Philips and their industry leadership in driving sustainable healthcare made them a natural partner to help audit our emissions and develop a roadmap for the future."

Part of an existing 15-year strategic managed services agreement between Heart Hospital and Philips, the analysis involved a detailed lifecycle assessment of the hospital’s medical equipment, supply chain, and clinical operations. The analysis provided a baseline carbon footprint for Tampere Heart Hospital’s interventional cardiology service and facilitated the identification of opportunities to enhance patient throughput and equipment utilization to reduce future emissions. Top findings included optimization of the hospital’s patient care pathways to improve efficiency and materials use, and opportunities for reducing inbound airfreight, reducing waste and improving waste separation.

"At Philips, we are committed to driving systemic change towards more sustainable and equitable patient care. Through our healthcare technology and expertise, we can help healthcare providers to support their patients with as little impact on the environment as possible," said Robert Metzke, Global Head of Sustainability at Philips. "This valuable and informative analysis with Tampere Heart Hospital, a pioneering and leading global cardiac care provider, will help achieve our shared goal of taking care of patients and the planet at the same time."

In addition to a detailed analysis of carbon emissions associated with the hospital's medical equipment and supply chain, Philips' analysis of the hospital's current emissions also encompasses clinical operations in key patient care pathways.

This sustainability program with Tampere Heart Hospital follows similar analyses conducted by Philips earlier in 2023 at Vanderbilt University Medical Center (Nashville, USA) and the private biomedical research and clinical care provider Champalimaud Foundation (Lisbon, Portugal), aimed at reducing the carbon footprint of their diagnostic imaging.

Globally, healthcare systems have a significant climate footprint and make a major contribution to the climate crisis [1]. Building on decades of experience reducing energy consumption, waste, and materials and substance usage, Philips has operated globally carbon-neutral since 2020, embedding EcoDesign principles and circular business models into its innovation processes and ways of working. The company offers a range of health technologies and innovations that help reduce healthcare providers’ impact on the environment. For example, its Philips Spectral CT 7500 uses 62.5% less energy [2], and the Philips MR – Ingenia Ambition 1.5T, which uses a breakthrough design where the magnetic components are completely sealed and only need seven liters of helium over its lifetime compared to roughly 1,500 liters with other Philips systems [3]. Additionally, with Philips MR SmartSpeed, the Ingenia Ambition 1.5T uses up to 53% less power per patient scan [3].

Read more here on how Philips is partnering with hospitals around the world to drive sustainable healthcare.

About Royal Philips

Royal Philips (NYSE: PHG, AEX: PHIA) is a leading health technology company focused on improving people's health and well-being through meaningful innovation. Philips' patient- and people-centric innovation leverages advanced technology and deep clinical and consumer insights to deliver personal health solutions for consumers and professional health solutions for healthcare providers and their patients in the hospital and the home. Headquartered in the Netherlands, the company is a leader in diagnostic imaging, ultrasound, image-guided therapy, monitoring and enterprise informatics, as well as in personal health. Philips generated 2022 sales of EUR 17.8 billion and employs approximately 71,500 employees with sales and services in more than 100 countries.

1. https://noharm-global.org/sites/default/files/documents-files/5961/HealthCaresClimateFootprint_092319.pdf
2. When compared to an equivalent CT model of one of the industry leaders
3. Applicable to Ambition S. Philips SmartSpeed power consumption versus Philips SENSE based scanning. Based on COCIR and in-house simulated environment. Results can vary based on site conditions.

Most Popular Now

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...