European Research Project to Improve Detection and Diagnosis of Breast Cancer

HAMAMHAMAM - European Highly Accurate Breast Cancer Diagnosis through Integration of Biological Knowledge, Novel Imaging Modalities, and Modelling - consists of 9 project partners from 7 countries with leading expertise in the field of breast imaging diagnosis, with EIBIR as the coordinating partner. The 3-year project started in September 2008 and is supported by the European Commission with a financial contribution of €3.6m.

Despite tremendous advances in modern imaging technology, both early detection and accurate diagnosis of breast cancer are still unresolved challenges. Unnecessary biopsies are taken and tumours frequently go undetected until a stage where therapy is costly or unsuccessful.

HAMAM will tackle this challenge by providing a means to seamlessly integrate the available multi-modal images and the patient information on a single clinical workstation. Based on knowledge gained from a large multi-disciplinary database, populated within the scope of this project, suspicious breast tissue will be characterised and classified.

The exact diagnosis of suspicious breast tissue is ambiguous in many cases. HAMAM will resolve this using statistical knowledge extracted from the large case database. The clinical workstation will suggest additional image modalities that may be captured to optimally resolve these uncertainties. The workstation thus guides the clinician in establishing a patient-specific optimal diagnosis. This ultimately leads to a more specific and sensitive individual diagnosis.

HAMAM advances the state-of-the-art as it proposes a sound statistical and mathematical framework to integrate and combine the whole spectrum of patient information. HAMAM also goes beyond currently available technology by developing a prototypical solution that will be able to efficiently integrate all relevant clinical and imaging information within a single platform.

The overall strategy of the project is to foster the exchange and collaboration between basic scientists, clinicians, and IT experts, and to condense all information and knowledge in a common database and prototypical platform for multi-modal breast diagnosis.

For further information, please visit:
http://www.hamam-project.eu

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...