KEGG Spider: Interpretation of Genomics Data in the Context of the Global Gene

Scientists from Helmholtz Zentrum München have developed a breakthrough methodology for understanding metabolism related variations from experimental genomics data. Using proposed bioinformatics strategy they were able to demonstrate that in most cases identified disease-specific metabolism variations are not independent, e.g. deregulated genes from different pathways are linked to each other via one or two step of consecutive metabolic reactions. The methodology may prompt new drug development strategies to affect/change metabolism of the disease cells.

The results of the German research team, which consists of scientists from Helmholtz Zentrum München (National German Research Center for Environmental Health) have been published on 18 December 2008, in the open access journal "Genome Biology".

In the post-genomic era the targets of many clinical experimental studies are complex cell disorders. A standard experimental strategy is to compare the genetic/proteomics signature of cells in normal and anomalous states. As a result, a set of genes with differential activity is delivered. In the next step, the interpretation of identified genes in a model context is required. A widely accepted strategy is to infer biological processes that are most relevant to the analyzed gene list. The inference is based on prior knowledge of individual gene properties, such as gene biological functions or interactions. This common approach is usually referred as enrichment analysis. The major limitation of such type of analyses is an ability to understand the connections between genes from different and seems to be unrelated pathways.

In comparison to previously developed methods, KEGG spider provides a robust analytical framework for interpretation of gene lists in the context of a global gene metabolic network. The information of gene pair wise relations is widely exploited (gene A is related to gene B via metabolite C) and the inferred network model is not limited to the size of one metabolic pathway.

Examples of analysis of disease-specific genes by KEGG spider suggest that the split of metabolic reactions to canonical pathways is to some degree artificial. In most cases, metabolism-related genes were from several KEGG canonical pathways. However, the analysis with KEGG spider reveals that, if to consider the topology of the global gene metabolic network, these genes form a non-interrupted (maximum one or two gene is missing) disease-specific pathway, which run through several canonical pathways. These results also support a hypothesis that disease-specific metabolism variations in most cases are not independent, e.g. deregulated genes from different pathways are linked to each other via one or two step consecutive metabolic reactions. Of about twenty examples of analysis of disease-specific genes presented in the paper may serve as support for this hypothesis.

Reference
Antonov A.V., Dietmann S., Mewes G.W. KEGG spider: interpretation of genomics data in the context of the global gene metabolic network. Genome Biology 2008, 9:R179 doi:10.1186/gb-2008-9-12-r179.

About the Institute of Bioinformatics and Systems Biology (Munich Information Center for Protein Sequences)
The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) provides genome-related information and analyses in a systematic way. Institute supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis experimental data. For further information, please visit http://mips.gsf.de/.

About Helmholtz Zentrum München
The Helmholtz Zentrum München is a research institution of the Federal Government and the State of Bavaria within the Helmholtz Association of German Research Centres, the largest scientific organisation in Germany.

The Helmholtz Association is a community of 15 scientific-technical and biological-medical research centres. These centres have been commissioned with pursuing long-term research goals on behalf of the state and society. The Association strives to gain insights and knowledge so that it can help to preserve and improve the foundations of human life. It does this by identifying and working on the grand challenges faced by society, science and industry. Helmholtz Centres perform top-class research in strategic programmes in six core fields: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space.

In future, the Helmholtz Zentrum München will be represented within the research field Health of the Helmholtz Association with both programs, Environmental Health und Systemic Analysis of Multifactorial Diseases, as well as in the field Earth and Environment with the Terrestrial Environment program.

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...