EU Funded Project to Develop Image-Guided Localized Drug Delivery

The EU-funded SonoDrugs project is developing tiny, image-guided capsules that will convey drug doses through the bloodstream to the site of disease, where they will be activated by ultrasound pulses. The new technology, which focuses on cardiovascular disease (CVD) and cancer, is expected to vastly improve therapeutic efficiency. The project has been financed with EUR 10.9 million under the Seventh Framework Programme (FP7) and brings together 15 academic and industrial partners from all over Europe.

Cancer and cardiovascular disease are two of the most common causes of death; the EU recorded 1.9 million deaths from CVD in 2003 and 1.2 million from cancer in 2004. Current treatments rely on 'whole-body' doses that are difficult to control and often come with undesirable side effects.

One of the goals of SonoDrugs is to ensure that drugs targeting cancer or cardiovascular disease provide the maximum benefit to the patient by being activated only where they encounter diseased tissue. This should certainly improve the efficiency of delivery, but it also avoids the problem of dosing all of the body's major organs.

The researchers are working to develop microscopic (100-2,000-nanometre-diameter) drug-loaded capsules that can be delivered through the bloodstream to diseased tissue, where they can release a dose of the drug on command. The very small size of the capsules allows them to be conveyed through the smallest blood vessels and well into the diseased tissues. The drug doses will be contained either within the particles themselves, or somehow attached to the shell.

Two particles will be designed: one with a shell that melts in response to the local heating effect of ultrasound, and a larger one that ruptures under pressure from ultrasound pulses. A different version of this second type of particle, often referred to as a 'microbubble', is already in use as a 'contrast agent' in ultrasound imaging.

Real-time magnetic resonance imaging (MRI) will be used to detect the arrival of the capsules at the desired destination. MRI is ideally suited to the project because it measures local tissue temperatures, locates lesions and tracks labelled particles easily. Once at their destination, the drug-loaded particles will be forced to release their dose, either by the heat or pressure from focused ultrasound pulses.

SonoDrug's MRI-guided drug delivery efforts focus on treatments for cancer; MRI techniques will be developed that will simultaneously detect the arrival of the labelled, drug-loaded particles at the disease site; measure the heating effect of ultrasound pulses; and monitor the temperature-triggered release of drugs from the particles.

The partners will explore potential treatments for CVD using ultrasound as both the primary imaging modality and the trigger for drug release from the pressure-sensitive microbubbles. One of the project partners, Philips Royal Electronics, will adapt its existing microbubble technology to deliver drugs; SonoDrugs will also make use of its integrated MRI/ultrasound research system.

"New therapeutic options such as externally triggered local drug release at the specific site of disease hold the promise to significantly improve patient care," said Henk van Houten, senior vice president of Philips Research. "We realise that medical imaging technologies are only one of the 'enablers' required to fulfil this promise. However, the wide-ranging expertise that has been brought together in the SonoDrugs project puts us in a strong position to ultimately deliver the benefits of image-guided drug delivery to patients and care providers."

The researchers will also examine the potential of gas-filled microbubbles to increase the uptake of drug doses at the target sites in a process called 'sonoporation'. Sonoporation occurs when gas-filled microbubbles fracture in response to the stress induced by an ultrasound pulse; when this happens near a living cell, the cell's wall is impacted and becomes more porous. This makes the cell more willing to let in large drug molecules. This process is potentially quite useful for reducing the necessary doses in conventional 'whole-body' drug delivery. The way it works is not yet completely understood, and forms an exciting area of investigation for the project.

For further information, please visit:
http://www.research.philips.com

Relate news article:

Copyright ©European Communities, 2009
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Why the NHS is Seeking to Make Media Ser…

Opinion Article by Dean Moody, Healthcare Services Director, Airwave Healthcare. Tim Kelsey and Martha Lane Fox called for WiFi to be made available free of charge throughout the NHS back in...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...