New International eHealth Neuro-Musculo-Skeletal Physiome Project

Neuro-Musculo-Skeletal Physiome, or NMS Physiome for short, officially started on January 27th, 2010. This is a VPH Internationalisation cooperation project between the European integrated project VPHOP, and the United States NIH Center for physics-based Simulation of Biological Structures, SIMBIOS.

VPHOP and SIMBIOS are two of the largest research projects worldwide developing technology for personalised, predictive, and integrative musculoskeletal medicine. These two projects are targeting the same strategic objective and developing highly complementary technologies. This unique condition creates an compelling opportunity for international collaboration, one which would dramatically increase the international impact of the work being done by the VPHOP project, and foster global cooperation on one of the grand challenges of biomedical research.

VPHOP, formed by a consortium of 19 partner institutions led by the Rizzoli Orthopaedic Institute, is developing the next generation of health technologies to fight osteoporosis. As part of this endeavour, the personalised modelling of the patient's neuro-musculo-skeletal system is essential.

SIMBIOS provides infrastructure, software, and training to help biomedical researchers understand biological form and function as they create novel drugs, synthetic tissues, medical devices, and surgical interventions. The cluster of projects connected to the SIMBIOS center is investigating a wide scale of biological structures - from molecules to organisms. Driving biological problems include RNA folding, protein folding, myosin dynamics, cardiovascular dynamics, and neuromuscular biomechanics. In particular, the team of one of the two Principal Investigators of SIMBIOS, Scott Delp, based at Stanford University, focuses on the accurate modelling of the neuro-musculo-skeletal system.

In addition to the Rizzoli Orthopedic Institute and to Stanford University, the NMS Physiome project will see the participation of Empirica, SCS, and the University of Bedfordshire, all members of the VPHOP consortium.

NMS Physiome three-years activity will revolve primarily around three objectives:

  • Integrate the community web services developed by VPHOP and SIMBIOS to make teamwork across the two projects easier.
  • Integrate the software tools, MAF and OpenSIM/FEBio, developed in the two projects in order to obtain a better collective tool chest for neuromusculoskeletal modelling.
  • Combining the latest research achievements of the two consortia to better face the grand challenges the multiscale modelling of the musculoskeletal system poses, such as the efficient multiscale modelling of the musculoskeletal system, the creation of accurate patient-specific models from clinically available data, and the development of modelling methods to cope with the probabilistic nature of the neuromotor function.

For further information, please visit:
http://www.biomedtown.org/biomed_town/nmsphysiome/

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Why the NHS is Seeking to Make Media Ser…

Opinion Article by Dean Moody, Healthcare Services Director, Airwave Healthcare. Tim Kelsey and Martha Lane Fox called for WiFi to be made available free of charge throughout the NHS back in...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

Great Start for Ideas and Innovations: D…

8 - 10 April 2025, Berlin, Germany. From 15 October to 15 November 2024, the DMEA invites experts from business, science, politics and practice to actively participate in shaping the congress...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...