New International eHealth Neuro-Musculo-Skeletal Physiome Project

Neuro-Musculo-Skeletal Physiome, or NMS Physiome for short, officially started on January 27th, 2010. This is a VPH Internationalisation cooperation project between the European integrated project VPHOP, and the United States NIH Center for physics-based Simulation of Biological Structures, SIMBIOS.

VPHOP and SIMBIOS are two of the largest research projects worldwide developing technology for personalised, predictive, and integrative musculoskeletal medicine. These two projects are targeting the same strategic objective and developing highly complementary technologies. This unique condition creates an compelling opportunity for international collaboration, one which would dramatically increase the international impact of the work being done by the VPHOP project, and foster global cooperation on one of the grand challenges of biomedical research.

VPHOP, formed by a consortium of 19 partner institutions led by the Rizzoli Orthopaedic Institute, is developing the next generation of health technologies to fight osteoporosis. As part of this endeavour, the personalised modelling of the patient's neuro-musculo-skeletal system is essential.

SIMBIOS provides infrastructure, software, and training to help biomedical researchers understand biological form and function as they create novel drugs, synthetic tissues, medical devices, and surgical interventions. The cluster of projects connected to the SIMBIOS center is investigating a wide scale of biological structures - from molecules to organisms. Driving biological problems include RNA folding, protein folding, myosin dynamics, cardiovascular dynamics, and neuromuscular biomechanics. In particular, the team of one of the two Principal Investigators of SIMBIOS, Scott Delp, based at Stanford University, focuses on the accurate modelling of the neuro-musculo-skeletal system.

In addition to the Rizzoli Orthopedic Institute and to Stanford University, the NMS Physiome project will see the participation of Empirica, SCS, and the University of Bedfordshire, all members of the VPHOP consortium.

NMS Physiome three-years activity will revolve primarily around three objectives:

  • Integrate the community web services developed by VPHOP and SIMBIOS to make teamwork across the two projects easier.
  • Integrate the software tools, MAF and OpenSIM/FEBio, developed in the two projects in order to obtain a better collective tool chest for neuromusculoskeletal modelling.
  • Combining the latest research achievements of the two consortia to better face the grand challenges the multiscale modelling of the musculoskeletal system poses, such as the efficient multiscale modelling of the musculoskeletal system, the creation of accurate patient-specific models from clinically available data, and the development of modelling methods to cope with the probabilistic nature of the neuromotor function.

For further information, please visit:
http://www.biomedtown.org/biomed_town/nmsphysiome/

Most Popular Now

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...