A Major Step in Molecular Simulation - Key to Designing New Drugs

Researchers at Hospital del Mar Research Institute (IMIM) and Pompeu Fabra University (UPF) have successfully reproduced and reconstructed the complete process of a small molecule binding with its target protein. IMIM and UPF are part of the VPH NoE Network and this project started as part of the VPH NoE's Seed Exemplar Project 4.

This advance enables the calculation of the binding affinity and binding timescale as well as understanding the interactions established by the drug in order to act, thus moving towards safer and more efficient design of new drugs. This groundbreaking project helps show a process that was hitherto invisible and therefore unknown, and opens up a new avenue in the design of new drugs.

The binding process of a drug, usually a small molecule, to its target protein is highly dynamic and depends on interactions at a nanometric scale (billions of times smaller than a metre) and occurs at timescales of nano/micro-seconds (billions of times faster than a second). The capturing of movements of small molecules with a resolution of up to an atom is beyond current technical capabilities. However, using computer techniques, it is possible to represent the molecules at atomic scale and reproduce their movements with high mathematical precision.

Understanding how protein and molecules bind - in which the latter causes a biological response after being recognised by the former (binding) - is vitally important for the design of new drugs. Despite the progress made so far with the technique, no study had provided a complete reconstruction of the protein-ligand binding process. "The method provides not only the binding affinity and the kinetics of the reaction, but also information about the atomic resolution during the process: binding sites, transition states and metastable states are potentially useful for expanding the probability of success when designing drugs. This methodology can be directly applied to other molecular systems and is therefore of general interest in biomedical and pharmaceutical research" explains Gianni de Fabritiis, coordinator of the Computational Biophysics Laboratory of the Biomedical Computer Research Programme (GRIB) run by Hospital del Mar Research Institute (IMIM) and Pompeu Fabra University (UPF).

The researchers are now working to expand the applicability of this methodology and make better use of the computational capabilities as, in cases in which ligands are larger and more flexible and where the proteins involve more complex binding processes, greater computational effort is required.

For further information please see the reference article: "Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations" IBuch, T Giorgino, G De Fabritiis. www.pnas.org/content/early/2011/05/31/1103547108.abstract

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...