From Patient Data to Personalised Healthcare in Alzheimer's Disease

Dementia has been recently identified as a health priority both in Europe and in the USA. Efficient solutions for early diagnosis and treatments are highly needed. The PredictAD project has developed several approaches for making the diagnosis more efficient and objective.

Alzheimer's disease, the most common cause of dementia, alone accounts for costs equivalent to about 1% of the gross domestic product (GDP) of the whole world and the number of persons affected will double in the next 20 years. Early diagnostics plays a key role in solving the problem because treatments of this irreversible disease should be started in an early phase to be efficient. Various treatments are currently under extensive development. So far, the lack of systematic and objective ways to identify persons for treatments has been apparent.

At present only post mortem pathology reliably indicates that an individual suffered from AD. Novel diagnostic guidelines emphasize the importance of various biomarkers from cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), positron emission tomography (PET) and genetic profiling in addition to neuropsychological examinations. Still, the time from symptoms to diagnosis is on average 20 months in Europe. With regards to prevention, the disease is thought to progress even more than a decade prior to the appearance of the first symptoms.

The main goal of the EU-funded PredictAD research project is to develop novel approaches:

  • for extracting efficient biomarkers, and
  • for combining this biomarker information to enable objective earlier diagnosis and follow-up of treatment efficacy in AD.

MRI is an excellent tool for measuring the brain tissue loss, a well-known hallmark of AD. In current clinical practice, images are interpreted mostly only by visual inspection but there is a great need for objective measurements. PredictAD has managed to develop efficient tools for measuring the size of the hippocampus, a key area in AD, and the rate of its tissue loss, and two modern approaches based on comparing patient data with previously diagnosed cases available in large databases. PET is another imaging technology studied in the project. A novel tracer developed recently especially for diagnostics of AD provides promises for very early diagnosis of the disease.

Various biomarkers extracted from CSF are known to be strongly related with the disease. Blood samples would be an excellent source for detecting AD at early phase as blood sampling is not considered an invasive technique. PredictAD has studied the role of metabolomic and protein compounds in AD from blood samples with promising results.

PredictAD has studied the performance of a novel technology, transcranial magnetic stimulation (TMS) combined with electroencephalographic (EEG) measures in detecting the disease. The strength of TMS/EEG is that it allows direct and non-invasive perturbation of the human cerebral cortex without requiring the subject's collaboration. Our study has shown significant changes in AD patients compared with healthy aging people.

Diagnosis requires a holistic view of the patient combining information from several sources, from biomarkers to interviews. This process involves subjective reasoning and requires strong expertise from the clinicians.

Modern hospitals have huge data reserves containing hidden information about the appearance of different diseases and about the variability of humans in general. This information could be utilised in diagnostics by systematic mathematical modelling leading to more objective and reliable diagnostics.

PredictAD has designed a totally novel approach for measuring objectively the state of the patient. This decision support system, developed in close collaboration with clinicians, compares patient measurements with measurements of other patients in large databases and provides at the end an evidence-based index and graphical representation reflecting the state of the patient.

The project has shown that clinicians are able to detect persons that convert later to AD more accurately using the tool than previously. The clinicians are also much more confident about their clinical decisions. Both of these factors make possible earlier diagnostics.

Although Alzheimer's disease is one of the biggest health threads during the next decades, even modest improvements achieved in disease progression may have remarkable effects. It has been estimated that delaying the disease by one year would reduce the number of AD cases by 10 % globally. Early diagnostics combined with novel drugs under development and early psychosocial care may delay the institutionalization of patients, reducing suffering and the costs to the society. PredictAD has taken several steps towards solving the challenge of AD diagnostics by many innovations and practical solutions. The exploitation of the PredictAD results has been started. Several patent applications have been filed and the technologies developed have been already licensed.

For further information, please visit:
http://www.predictad.eu

Related news articles:

European Commission, ICT for Health Unit (Unit H1)
Directorate General Information Society and Media
http://ec.europa.eu/information_society/ehealth

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...