New "Virtual Liver" Technology Helps Detect Liver Tumours

Scientists and surgeons from France, Germany, United Kingdom and Switzerland have developed a "virtual liver", using EU research funding, which will help surgeons better plan and carry out tumour operations and ensure quicker patient recovery. The PASSPORT project (Patient-Specific Simulation and Pre-Operative Realistic Training) makes a uniquely accurate "virtual liver" available to physicians based on medical images sent by the radiologist to a PASSPORT online service, which helps surgeons decide whether they should or not operate. Surgeons can now see more precisely where a tumour is and where they will have to operate to safely remove it.

European Commission Vice President Neelie Kroes said: "Liver cancer claims hundreds of thousands of lives in Europe and the world. The technology developed in the EU-funded PASSPORT project is a breakthrough that will improve diagnosis and surgery, and help to save lives."

The liver performs more than 100 vital functions in the human body. Liver diseases, including cancer and sclerosis of the liver, kill thousands of people every year. Liver transplants are only an option for a very small proportion of patients with liver disease. Another option is to remove the infected part of the organ and allow the liver to regenerate. To do so, surgeons need to know the tumour’s precise location, the volume of the functional liver which would remain, and the patient's overall health in order to accurately assess the chance of a successful intervention. Under current practices, less than 50% of patients undergo surgery. PASSPORT's virtual liver could considerably increase this percentage.

The virtual software being used in the project is based on open source technology available online making it easier for surgeons to collaborate and share their analysis.

Using EU-research funding to help improve citizens' lives, medical knowledge, and enable high-tech industries are among the goals of the Digital Agenda for Europe.

First results of the project clearly demonstrate the cost effectiveness and benefits of patient-specific surgical planning. The next step is making the software commercially available. This commercialisation will be a first step towards the routine clinical use of PASSPORT results. In practice, this means that a surgeon based anywhere in the world will be able to use this model, adjust it to the needs of each patient and considerably lower the cost of each patient's operation.

The PASSPORT project started in June 2008 and ended in December 2011. The total cost was €5,457,174 of which €3,635,049 came from EU funding. PASSPORT is part of the "Virtual Physiological Human" Network of Excellence (VPH NoE). The VPH NoE is a project which aims to help support and advance European research in biomedical modelling and simulation of the human body. It allows the surgeon to zoom in from the body to the organ, from the organ to the tissue, from the tissue to the cell. It thus allows a "multi-layered" approach so specialists can track the disease and see the way in which the disease propagates through the different levels of the body.

Related article:

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...