Data Mining Opens the Door to Predictive Neuroscience

The discovery, using state-of-the-art informatics tools, increases the likelihood that it will be possible to predict much of the fundamental structure and function of the brain without having to measure every aspect of it. That in turn makes the Holy Grail of modelling the brain in silico - the goal of the proposed Human Brain Project - a more realistic, less Herculean, prospect. "It is the door that opens to a world of predictive biology," says Henry Markram, the senior author on the study, which is published this week in PLoS ONE.

Within a cortical column, the basic processing unit of the mammalian brain, there are roughly 300 different neuronal types. These types are defined both by their anatomical structure and by their electrical properties, and their electrical properties are in turn defined by the combination of ion channels they present—the tiny pores in their cell membranes through which electrical current passes, which make communication between neurons possible.

Scientists would like to be able to predict, based on a minimal set of experimental data, which combination of ion channels a neuron presents. They know that genes are often expressed together, perhaps because two genes share a common promoter - the stretch of DNA that allows a gene to be transcribed and, ultimately, translated into a functioning protein - or because one gene modifies the activity of another. The expression of certain gene combinations is therefore informative about a neuron's characteristics, and Georges Khazen and co-workers hypothesised that they could extract rules from gene expression patterns to predict those characteristics.

They took a dataset that Prof Markram and others had collected a few years ago, in which they recorded the expression of 26 genes encoding ion channels in different neuronal types from the rat brain. They also had data classifying those types according to a neuron's morphology, its electrophysiological properties and its position within the six, anatomically distinct layers of the cortex. They found that, based on the classification data alone, they could predict those previously measured ion channel patterns with 78 per cent accuracy. And when they added in a subset of data about the ion channels to the classification data, as input to their data-mining programme, they were able to boost that accuracy to 87 per cent for the more commonly occurring neuronal types.

"This shows that it is possible to mine rules from a subset of data and use them to complete the dataset informatically," says one of the study's authors, Felix Schürmann. "Using the methods we have developed, it may not be necessary to measure every single aspect of the behaviour you're interested in." Once the rules have been validated in similar but independently collected datasets, for example, they could be used to predict the entire complement of ion channels presented by a given neuron, based simply on data about that neuron's morphology, its electrical behaviour and a few key genes that it expresses.

Researchers could also use such rules to explore the roles of different genes in regulating transcription processes. And importantly, if rules exist for ion channels, they are also likely to exist for other aspects of brain organisation. For example, the researchers believe it will be possible to predict where synapses are likely to form in neuronal networks, based on information about the ratio of neuronal types in that network. Knowledge of such rules could therefore usher in a new era of predictive biology, and accelerate progress towards understanding and modelling the brain.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...