Population Displacement During Disasters Predicted Using Mobile Data

Using data supplied by a mobile operator, researchers at Karolinska Institutet have shown that population movements after the 2010 Haiti earthquake followed regular patterns. This information can be used to predict beforehand the movements of people after a disaster, and thus improves chances for aid to be delivered to the right places at the right time.

Every year, tens of millions of people are displaced by natural disasters, and to date knowledge of their movement patterns has been sparse. The results of the study, now published in The Proceedings of the National Academy of Sciences (PNAS), could therefore help aid organisations to prepare and execute their relief efforts following a major disaster.

After the earthquake in Haiti, over 600,000 people left the capital Port-au-Prince, and over a million people were left homeless. With the help of mobile data provided by Digicel, the largest mobile operator in Haiti, the researchers looked for patterns in the movements of two million anonymous mobile users.

"When disaster strikes we tend to seek comfort in our nearest and dearest," says Xin Lu, who conducted the study together with colleagues Dr Linus Bengtsson and Dr Petter Holme. "We can see by the mobile data that where people were over Christmas and New Year, which was just before the earthquake, tended to be the place where they returned to afterwards."

The team also studied the everyday movements of people and found that although people moved greater distances after the earthquake compared to before, their daily movement patterns were extremely regular. Knowing a person's movements during the first three months after the earthquake, the researchers were able to show that it is possible to predict with 85 per cent probability the location of this person on a particular day in the ensuing period.

The researchers led the work on a paper last August where they, together with colleagues, showed how mobile data could be used to describe population movements after a disaster has happened. This present study takes the work a step further by showing the potential to predict population movements beforehand. Since the disaster, Linus Bengtsson and Xin Lu, both doctoral students at Karolinska Institutet's Division of Global Health, have initiated Flowminder.org, a non-profit organisation with the aim of disseminating analyses of population movements for free to relief agencies after disasters.

Xin Lu, Linus Bengtsson & Petter Holmen
Predictability of population displacement after the 2010 Haiti earthquake
PNAS, online first 18-22 June 2012

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Routine AI Assistance may Lead to Loss o…

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...