Intelligent Clothing - the future of fashion never looked so good

Multidisciplinary research in nanotechnology-based solutions, new functionalisation techniques, knowledge-based processes including bioprocesses, novel fibres and composites-based innovative products, biomedical sensors, microelectronics, mobile communication and telemedicine has led to the development of new textile products and markets characterised by high added-value and growth potential. Tensile structures, textiles for the retrofitting of masonry structures and earthworks, textiles for permanent architectural structures, medical textiles for disease prevention, wound healing, artificial medical ligaments, textile prostheses, and textiles for safety and performance represent a growth area for the textile industry, offering enormous scope for innovation and a wide range of potential applications.

Intelligent biomedical clothes are a key element in the prevention and early detection of diseases. Smart fabrics with embedded sensors can monitor different aspects of the human body. Clothes made of such fabrics provide user-friendly ways of monitoring patients over extensive periods of time, thus reducing the need for doctors' appointments and hospital visits. The data collected by the wearable sensors is transmitted electronically to telemedicine centres via fixed or wireless communication networks. When the data indicates a need for concern, alarms or warnings are generated by the electronic systems. The process saves time and increases patient-doctor interaction. Intelligent biomedical clothes could benefit a wide range of people:

  • People who just want to stay fit and healthy;
  • Healthy people who know they are at risk of developing specific illnesses but want to remain healthy;
  • Chronically ill patients by helping them manage their condition effectively; and
  • Vulnerable people, such as the elderly, by enabling them to live as independently as possible, for as long as possible, outside traditional care institutions.

The European Commission has supported the development of intelligent biomedical clothes throughout the Fifth and Sixth Framework Programmes. For instance, under FP6, €64 million was devoted to textiles projects, 30% of which was targeted at clothing. A number of prototype systems, such as the garments developed in the WEALTHY and MYHEART projects are a direct result of this spending. The forthcoming Seventh Framework Programme provides for more support for research in this field in order to further develop the potential of intelligent fabrics. A couple of examples of this are the "Application of New Materials including Bio-based Fibres in High-Added Value Textile Products" objective, which is being developed under the NMP Programme (on Nanosciences, Nanotechnologies, Materials and New Production Technologies) and the "Personal Health Systems for Monitoring and Point-of-Care diagnostics" project, which comes under the umbrella of the Information and Communication Technology Programme.

LucyLucy, a 29 year-old engineer, runs regularly, eats sensibly and generally takes care of herself. For the past month, Lucy has been experiencing heart palpitations so she goes to her GP for a complete check up. Despite her youth and healthy lifestyle, Lucy's test results indicate that she is at relatively high risk of having a heart attack. Lucy is keen to maintain her lifestyle so she has a discussion with her doctor about how best to manage her health problem. Her doctor is as keen as Lucy is that her heart should continue to benefit from regular sport so he suggests that she wears intelligent clothing to monitor her heart while she runs.

Tiny sensors integrated into her clothing monitor Lucy's heart rate and send out a signal if she needs to slow down. This simple device enables Lucy to continue to run, safe in the knowledge that she is not putting herself at risk. The world of fashion is set to be taken by storm by intelligent clothing that works as you wear!

Examples of FP6 research projects on intelligent clothing:

  • FLEXIFUNBAR addresses research issues on emerging technologies for the production of new flexible structures (paper, leather and technical textiles for applications in transport, medicine, security and clothing). The project's various activities simultaneously focus on integrated areas of research and scaling up (nanostructures, materials research for barrier effects, new production processes);
  • DIGITEX has the clear strategic objective of achieving a completely new industrial process for the coating of textiles based on digital printing technologies, and in particular textiles for safety performance and industrial workwear in services and industry. The technology used involves the Integration of nanoparticles in fluids to be jetted onto textiles (Digital jetting technique) giving rise to anti-flame, anti-chemical, and bacteria-proof functionalities;
  • INTELTEX is expected to have a high potential impact for the smart textile sector by developing novel, sensitive and functional Conductive Polymer Composite-based textiles for construction, medical and protective clothing applications. They could be used in medical wear for monitoring body temperature and protective clothing such as that used by firemen;
  • LEAPFROG aims at the modernisation and ultimate transformation of the entire textile industry. It is the outcome of a long process conducted by EURATEX, the European Apparel and Textile Organisation. The project addresses virtual prototyping where advanced simulation tools enable designers to virtually prototype a garment collection in terms of style, size and functionality;
  • MYHEART develops intelligent systems for the prevention and monitoring of cardiovascular diseases. The project develops smart electronic and textile systems and appropriate services that empower the users to take control of their own health status.

Source: Europe Direct Newsletter

For further information, please visit:

  • FLEXIFUNBAR - the objective of Flexifunbar is to develop and promote multi-functional flexible structure for use in many multisectorial industrial applications in the health field as well as in the building construction and transportation industrie...
  • DIGITEX - a joint research and innovation initiative of the European textile and clothing industry born to a Consortium Agreement made of the best companies working in textile and clothing industry and research centres which will attempt to develop and implement new ways of optimal fabric preparation for clothing production...
  • MYHEART - the MyHeart mission is to empower citizen to fight cardio-vascular diseases by preventive lifestyle and early diagnosis...

Most Popular Now

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

AI Revolutionizes Glaucoma Care

Imagine walking into a supermarket, train station, or shopping mall and having your eyes screened for glaucoma within seconds - no appointment needed. With the AI-based Glaucoma Screening (AI-GS) network...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...