Novel Algorithm Detects Early Signals of Alzheimer's Disease

The projected substantial increase in Alzheimer's disease due to the higher life expectancy in modern societies is one of the great future challenges of health care systems worldwide. Alzheimer's disease leads to significant changes in the temporal structure of activities that impair everyday activities. Abnormal motion behavior and degeneration of the sleep-waking cycle are among the most severe behavioral symptoms. An early detection and even a prediction of these behaviors would allow a timely onset of interventions that aim to delay the manifestation or exacerbation of symptoms and reduce the need of institutionalized care.

An interdisciplinary joint study by the Medical Faculty and the Faculty for Computer Science and Electrical Engineering of Rostock University and the German Center for Neurodegenerative Diseases (DZNE) Rostock has now established a novel sensing algorithm that allows detecting the effect of Alzheimer's disease in unconstrained everyday motion behavior. In a dyad study with n=46 subjects (23 diagnosed with Alzheimer's dementia, 23 healthy controls), the method achieves an accuracy of 91% when labeling an unknown subject as "AD" or "healthy control". The algorithm uses spectral features of motion signals that are obtained by unobtrusive accelerometers worn by the subjects during their normal everyday activities.

"The method shows a substantially higher sensitivity than established behavioral rating scales, such as Cohen-Mansfield Agitation Index" emphasizes Prof. Teipel, head of DZNE Rostock and responsible for the study design. "This means, we now have a more sensitive instrument for detecting changes in behavior that allows us to monitor disease progress and the efficacy of interventions." He adds: "And the measure we obtain is objective, it does not require the assessment by a human observer."

"It is fascinating that our approach is able to work with unconstrained everyday motion behavior," says Prof. Kirste from the Computer Science Department, who has designed the analysis algorithm. "Considering the high variance of everyday activities, we think that the ability to detect the influence of Alzheimer's disease on the temporal structure of this behavior is a very important result." He remarks: "On a practical level this means we can use low-cost sensing devices and we do not require the patients to perform specific controlled activities. Prospectively, it might even be possible to use the data of established devices such as mobile phones or navigation support devices for this purpose."

The results of this study will be presented in the paper "Detecting the Effect of Alzheimer's Disease on Everyday Motion Behavior," scheduled for publication in issue 38(1) of the Journal of Alzheimer's Disease. An early online version of this paper is available at DOI: 10.3233/JAD-130272.

This study is part of a larger joint project that aims at establishing the effect of Alzheimer's disease on the temporospatial structure of an individual's Life Space. These effects will be used for both diagnostic purposes and for assistive interventions, such as supporting orientation in everyday activities.

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...