Do Patient Decision Support Interventions Lead to Savings?

Publicity surrounding the implementation of patient decision support interventions (DESIs) traditionally focuses on two areas of improvement: helping patients make better decisions AND lowering health care spending. The use of patient decision support interventions as a means to generate health care savings has been widely advocated, but the extent and quality of evidence is unclear.

A systematic review found that the evidence for savings was not as broad or deep as suspected. In addition, an examination of the quality of the economic analyses in the studies was performed. Not surprisingly for a young field, the quality has room for improvement. An assessment of the risk of bias in each study found a moderate to high risk across the studies that found savings.

Led by Thom Walsh, a post-doctoral fellow at the Dartmouth Center for Health Care Delivery Science, the team included Paul James Barr and Rachel Thompson, also postdoctoral fellows at the Dartmouth Center for Health Care Delivery Science, Elissa Ozanne, associate professor at the Dartmouth Institute for Health Policy & Clinical Practice, Ciaran O'Neill, professor at the School of Business and Economics, National University of Ireland, and Glyn Elwyn, professor at both the Dartmouth Center for Health Care Delivery Science and the Dartmouth Institute for Health Policy & Clinical Practice.

Their objective was to perform a detailed systematic review of a wide range of studies to assess DESIs' potential to generate savings, given a concern that premature or unrealistic expectations could jeopardize wider implementation and lead to the loss of the already proven benefits. The ethical imperative to inform patients is, in the authors' views, paramount. Although there is good evidence to show that patients tend to choose more conservative approaches when they become better informed, there is insufficient evidence, as yet, to be confident that the implementation of patient decision support interventions leads to system-wide savings.

After reviewing 1,508 citations, seven studies with eight analyses were included in the analysis. Of these seven studies, four analyses predict system-wide savings, with two analyses from the same study. The predicted savings range from US $8 to $3,068 per patient. Larger savings accompanied reductions in treatment utilization rates. The impact on utilization rates, overall though, was mixed. Authors used heterogeneous methods to allocate costs and calculate savings.

Dr. Walsh said, "Our review tells us the ability for decision support to lead to savings is still undetermined. There are many other reasons for the use of decision support. We are concerned the benefits could be lost if promises of savings are unfulfilled."

This article is published in the BMJ (British Medical Journal). BMJ 2014;348:g188

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...