New Technique Enables Increasingly Accurate PET Scan

A novel technique which reduces image degradation caused by respiratory motion during a PET scan was developed in a recent study at the University of Eastern Finland. PET scanning is routinely used to detect cancer and heart conditions. The new technique presented in the PhD thesis of Tuomas Koivumäki, MSc (Tech.), is based on bioimpedance measurement and it allows for image reconstruction at a specific phase of the patient's breathing pattern. This, in turn, makes it possible to reduce image degradation caused by motion.

In the future, the newly developed technique will enable increasingly accurate image acquisition especially during PET scans performed to detect cancers of the chest and upper abdomen, and inflammatory diseases of the heart. PET scanning, or positron emission tomography, is a modern nuclear medicine imaging method, which allows for the detection of cancer and heart conditions.

Thanks to enhanced image quality, PET images provide new and increasingly accurate data, potentially improving diagnosis reliability and treatment response monitoring. High-quality image data makes the treatment more efficient both medically and financially.

The study found that when synchronising images on the basis of bioimpedance, it was possible to discern smaller details. Motion compensation also significantly influenced the parameters measured from the images. Bioimpedance measurement offers a straightforward technique for acquiring the data needed for motion compensation. Furthermore, the technique can be easily integrated into electrocardiogram (ECG) measurement, which is widely used to monitor heart function during the scan.

Bioimpedance helps assess the patient's breathing
In techniques based on bioimpedance measurement, a very weak electrical current is passed through the patient's chest, and changes in the resulting voltage are measured. The voltage has been observed to change according to the patient's breathing and cardiac function. Earlier, bioimpedance measurements have been used to assess for example body composition, fluid accumulations in lungs, and indicators of cardiac function.

The study focused on the feasibility of bioimpedance-based measurement techniques for respiratory and cardiac motion compensation in PET imaging. The study first used computational models and test subjects to determine an optimised bioimpedance measurement configuration for simultaneous measurement of respiratory and cardiac gating signals. The second phase of the study focused on analysing whether bioimpedance techniques can be used to reduce respiration-related degradation of PET images.

Motion degrades PET scan image quality
PET scanning is used for cancer staging and evaluating treatment response, as well as for studying myocardial blood flow and inflammatory diseases of the heart. Typically, a PET scan takes several minutes, which is why movement caused by the patient's breathing inevitably degrades image quality. Degraded image quality caused by respiratory motion has been reported to affect PET scanning performed to detect cancer and heart conditions in particular. At worst, image degradation may lead to a wrong diagnosis and inadequate or unnecessary treatment.

The results were originally published in Medical & Biological Engineering & Computing, Physiological Measurement, and Physics in Medicine and Biology.

The doctoral dissertation, entitled Bioimpedance Technique in Respiratory- and Dual-gated Positron Emission Tomography Imaging, is available for download at http://urn.fi/URN:ISBN:978-952-61-1581-8

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Why the NHS is Seeking to Make Media Ser…

Opinion Article by Dean Moody, Healthcare Services Director, Airwave Healthcare. Tim Kelsey and Martha Lane Fox called for WiFi to be made available free of charge throughout the NHS back in...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...