Major Breakthrough in New MRI Scan Technology for Lung Disease

New scanning technology which will give a much clearer picture of lung disease has taken a major step forward thanks to scientists at The University of Nottingham. The experts at the Sir Peter Mansfield Imaging Centre have developed a process using specially treated krypton gas as an inhalable contrast agent to make the spaces inside the lungs show up on an Magnetic resonance imaging (MRI) scan. It's hoped the new process will eventually allow doctors to virtually see inside the lungs of patients.

Traditional magnetic resonance imaging uses hydrogen protons in the body as molecular targets to give a picture of tissue but this does not give a detailed picture of the lungs because they are full of air. Recent technological developments have led to a novel imaging methodology called Inhaled Hyperpolarised Gas MRI that uses lasers to 'hyperpolarise' a noble (inert) gas which aligns (polarises) the nuclei of the gas so it shows up on an MRI scan.

The work will make 3D imaging using 'atomic spies' like helium, xenon, or krypton possible in a single breath hold by the patient. Nottingham has pioneered hyperpolarized krypton MRI and is currently advancing this technology towards the clinical approval processes.

Hyperpolarised MRI research has been trying to overcome a problem with these noble gases retaining their hyperpolarised state for long enough for the gas to be inhaled, held in the lungs and scanned. Now in a paper published in the Proceedings of the National Academy of Sciences, the Nottingham team has developed a new technique to generate hyperpolarised krypton gas at high purity, a step that will significantly facilitate the use of this new contrast agent for pulmonary MRI.

Chair in Translational Imaging at the Sir Peter Mansfield Imaging Centre, Professor Thomas Meersmann, said: "It is particularly demanding to retain the hyperpolarized state of krypton during preparation of this contrast agent. We have solved a problem by using a process that is usually associated with clean energy related sciences. It's called catalytic hydrogen combustion. To hyperpolarise the krypton-83 gas we diluted it in molecular hydrogen gas for the laser pumping process. After successful laser treatment the hydrogen gas is mixed with molecular oxygen and literally exploded it away in a safe and controlled fashion through a catalysed combustion reaction.

"Remarkably, the hyperpolarized state of krypton-83 'survives' the combustion event. Water vapour, the sole product of the 'clean' hydrogen reaction, is easily removed through condensation, leaving behind the purified laser-polarized krypton-83 gas diluted only by small remaining quantities of harmless water vapour. This development significantly improves the potential usefulness of laser-pumped krypton-83 as MRI contrast agent for clinical applications."

This new technique can also be used to hyperpolarise another useful noble gas, xenon-129, and may lead to a cheaper and easier production of this contrast agent.

As part of a recent Medical Research Council funding award, hyperpolarised krypton-83 is currently being developed for whole body MRI at high magnetic field strength in the Sir Peter Mansfield Imaging Centre's large 7 Tesla scanner. Studies will be carried out first on healthy volunteers before progressing to patient trials at a later phase.

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...