Mathematics to Fight Cancer

Mathematicians and physicians at the University of Bonn have developed a new model for immunotherapy of cancer. The method could help to develop new treatment strategies and to understand why some approaches do not work with certain tumors. The study is now appearing in the technical journal Scientific Reports.

One of the greatest problems in the fight against cancer is the great hardiness of the tumors. Drug therapy often leads to initial success, which is then wiped out by a relapse. Sometimes the therapy has no affect at all against some cancer cells. Other cells develop resistance over the course of therapy.

Certain cells of the immune system, the so-called T-cells, can fight malignant tumors. Such cells are used or activated in a targeted manner to treat cancers. The research groups of Prof. Dr. Thomas Tüting and Prof. Dr. Michael Hölzel or the University of Bonn have demonstrated in their experiments on skin cancer that tumor cells can change their external appearance, if an inflammatory reaction occurs in the course of treatment. Consequently, the T-cells no longer recognize them as harmful, and the cancer can continue to spread unimpeded.

A new model from mathematicians and physicians from the Excellence Cluster of the Hausdorff Center for Mathematics and ImmunoSensation of the University of Bonn now describes this effect mathematically, thus making it possible to analyse it. In the future, the model could be used, among other things, for computer simulation of various therapeutic approaches and thus for the development of optimal treatment strategies.

Tumors as population
"The initial results show that treatment with several types of immune cells could in fact be a promising approach", says the lead scientist of this work, Prof. Dr. Anton Bovier of the Hausdorff Center for Mathematics. The studies are based on a stochastic model from the area of adaptive dynamics, which was developed by the mathematicians for application, for example, in cancer research. "Tumors are nothing other than populations of cancer cells, which interact with one another in a very complex manner and react to their environment in the form of the body and its immune system," explains Prof. Bovier.

Simulation of therapy
In numerical simulations by the Bonn researchers, the long-term success of a therapy, even when the starting conditions were the same, depended on random fluctuations in the population sizes of cancer and immune cells. Whether this effect also occurs in reality and not just on the computer still needs to be investigated experimentally. The virtual research of the Excellence Cluster has also showed that treatment, under certain circumstances, can even increase the probability of mutation in cancer cells. In some cases in the simulation, a therapy actually accelerated the development toward aggressive variants of cancer.

Prof. Hölzel of ImmunoSensation summarises the results of the interdisciplinary work as follows: "This project can both call the attention of mathematicians to possible applications of their work in a medical context and also sensitize physicians to the use of mathematical methods. In any case, we will continue to do joint research in the fight against cancer". To make it possible to use the model in practice, more experimental data still needs to be developed.

Martina Baar, Loren Coquille, Hannah Mayer, Michael Hölzel, Meri Rogava, Thomas Tüting & Anton Bovier (2016): A stochastic model for immunotherapy of cancer. Scientific Reports. DOI: 10.1038/srep24169.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...