A 'Big Data' Approach to Developing Cancer Drugs

Scientists are starting to accumulate huge datasets on which genes mutate during cancer, allowing for a more systematic approach to "precision medicine." In a study published in Cell, researchers compared genetic mutations in patient tumors to those in cancer cell lines and then tested the cell lines' responses to therapeutic compounds. By analyzing where these datasets overlap, researchers can begin to predict on a large scale which drugs will best fight various cancers.

"The process that we've done, by nature, is a discovery process," says Mathew Garnett, a cancer biologist at the Wellcome Trust Sanger Institute. "It's the beginning of generating exciting new ideas about how we might target specific patient populations with specific drugs. This type of study wasn't possible a few years ago because we hadn't sequenced enough patient tumors."

When developing new anti-cancer drugs, researchers often rely first on cancer cell lines in the lab. "You can't screen hundreds of drugs across a single patient. It's not possible," says Ultan McDermott, a cancer clinician and researcher also at the Sanger Institute. "But you can do that with cell lines--you can expose them to many different drugs and ask questions about which is more or less sensitive."

How closely these cell lines match what actually happens in a human tumor has been unclear, however, and previous efforts to model drug response using cancer cell lines were done on a relatively small scale. To investigate a larger piece of the landscape, Garnett, McDermott, and their colleagues analyzed data from two public datasets, The Cancer Genome Atlas and the International Cancer Genome Consortium, and other studies, gathering genetic information for more than 11,000 tumor samples.

The team then compared these tumor samples to about 1,000 cancer cell lines used in labs, looking for lines that had the same types of mutations as the patient samples - and therefore might more closely mimic patient responses. "Many of the cell lines do capture the molecular features that are important to human beings in cancer," says McDermott.

Once they mapped the tumor mutations onto the cell lines, the researchers looked for the genetic mutations that could best predict the cancer cells' response to 265 different anti-cancer compounds at various stages of development. The drugs covered a range of mechanisms, including chemotherapeutics, small-molecule inhibitors, epigenetic modulators, and cell death regulators.

Many of the mutations that occurred both in tumor samples and cell lines did signal whether the cancer cells would be sensitive or resistant to different compounds, largely depending on the type of tissue the cancer originated in. "If you can identify the clinically relevant features in cell lines and correlate those with drug response, you're one step closer to identifying a drug interaction that could be important for a patient," says McDermott.

"We've taken a leap forward in doing this type of study in a very comprehensive and systematic way, as opposed to what often is done, where someone might do it with a single drug or in a single cell line," explains Garnett. "It's by no means the end of the journey--but it's a huge milestone."

Going forward, the researchers are creating a web portal to share their data, which will allow cancer researchers to see which cell lines most closely mirror the patient condition they aim to emulate and how those cell lines respond to different drugs. Garnett and McDermott's teams are also starting their own follow-up projects to investigate associations between certain cell mutations and drug effects, with the hope of more clearly pinpointing which cancer patients will most benefit from a given compound.

This study was supported by the Wellcome Trust, the European Bioinformatics Institute and Wellcome Trust Sanger Institute post-doctoral programs, the National Cancer Institute, the Netherlands Organization for Scientific Research, the People Programme (Marie Curie Actions) of the 7th Framework Programme of the European Union, the Agency of Competitiveness for Companies of the Government of Catalonia, La Fundació la Marató de TV3, the European Research Council, the Ministerio de Ciencia e Innovacion, the Institute of Health Carlos III, the Spanish Cancer Research Network, the Health and Science Departments of the Catalan Government, the Cellex Foundation, and a Cancer Research UK Clinician Scientist Fellowship.

Cell, Iorio et al.: "A landscape of pharmacogenomic interactions in cancer" http://www.cell.com/cell/fulltext/S0092-8674(16)30746-2

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...