Compiling Big Data in a Human-Centric Way

When a group of researchers in the Undiagnosed Disease Network at Baylor College of Medicine realized they were spending days combing through databases searching for information regarding gene variants, they decided to do something about it. By creating MARRVEL (Model organism Aggregated Resources for Rare Variant ExpLoration) they are now able to help not only their own lab but also researchers everywhere search databases all at once and in a matter of minutes.

This collaborative effort among Baylor, the Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital and Harvard Medical School is described in the latest online edition of the American Journal of Human Genetics.

Big data search engine
"One big problem we have is that tens of thousands of human genome variants and phenotypes are spread throughout a number of databases, each one with their own organization and nomenclature that aren't easily accessible," said Julia Wang, an M.D./Ph.D. candidate in the Medical Scientist Training Program at Baylor and a McNair Student Scholar in the Bellen lab, as well as first author on the publication. "MARRVEL is a way to assess the large volume of data, providing a concise summary of the most relevant information in a rapid user-friendly format."

MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER, all separate databases to which researchers across the globe have contributed, sharing tens of thousands of human genome variants and phenotypes. Since there is not a set standard for recording this type of information, each one has a different approach and searching each database can yield results organized in different ways. Similarly, decades of research in various model organisms, from mouse to yeast, are also stored in their own individual databases with different sets of standards.

Dr. Zhandong Liu, assistant professor in pediatrics - neurology at Baylor, a member of the Jan and Dan Duncan Neurological Research Institute at Texas Children's and co-corresponding author on the publication, explains that MARRVEL acts similar to an internet search engine.

"This program helps to collate the information in a common language, drawing parallels and putting it together on one single page. Our program curates model organism specific databases to concurrently display a concise summary of the data," Liu said.

Supporting researchers
A user can first search for a gene or variant, Wang explains. Results may include what is known about this gene overall, whether or not that gene is associated with a disease, whether it is highly occurring in the general population and how it is affected by certain mutations.

"MARRVEL helps to facilitate analysis of human genes and variants by cross-disciplinary integration of 18 million records so we can speed up the discovery process through computation," Liu said. "All this information is basically inaccessible unless researchers can access it efficiently and apply it to their own work to find causes, treatments and hopefully identify new diseases."

Collaboration
This project started as a necessity for the Model Organism Screening Center for the Undiagnosed Disease Network at Baylor, but as it grew, the group began reaching out to researchers in different disciplines for feedback on how MARRVEL might benefit them.

"This program is just the start. I think our tool is going to be a model for us to help clinicians and basic scientists more efficiently use the information already publicly available," Wang said. "It will help us understand and process all of the different mutations that researchers are discovering."

"The most exciting part is how this project is bringing so many different researchers together," Liu said. "We are working with labs we might not have normally collaborated with, trying to put together a puzzle of all this data."

Both Wang and Liu are thankful to the contributions from the genetics communities allowing them access to the databases as they developed MARRVEL.

Julia Wang, Rami Al-Ouran, Yanhui Hu, Seon-Young Kim, Ying-Wooi Wan, Michael F. Wangler, Shinya Yamamoto, Hsiao-Tuan Chao, Aram Comjean, Stephanie E. Mohr, Norbert Perrimon, Zhandong Liu, Hugo J. Bellen.
MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.
The American Journal of Human Genetics, doi: 10.1016/j.ajhg.2017.04.010.

Most Popular Now

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...