Self-Powered Paper-Based 'SPEDs' may Lead to New Medical-Diagnostic Tools

A new medical-diagnostic device made out of paper detects biomarkers and identifies diseases by performing electrochemical analyses - powered only by the user's touch - and reads out the color-coded test results, making it easy for non-experts to understand. The self-powered, paper-based electrochemical devices, or SPEDs, are designed for sensitive diagnostics at the "point-of-care," or when care is delivered to patients, in regions where the public has limited access to resources or sophisticated medical equipment.

"You could consider this a portable laboratory that is just completely made out of paper, is inexpensive and can be disposed of through incineration," said Ramses V. Martinez, an assistant professor of industrial and biomedical engineering at Purdue University. "We hope these devices will serve untrained people located in remote villages or military bases to test for a variety of diseases without requiring any source of electricity, clean water, or additional equipment."

"SPEDs are inexpensive, lightweight, flexible and easy to use," Martinez said.

Research findings are detailed in a paper appearing on Aug. 22 in Advanced Materials Technologies.

The test is initiated by placing a pinprick of blood in a circular feature on the device, which is less than two-inches square. SPEDs also contain "self-pipetting test zones" that can be dipped into a sample instead of using a finger-prick test.

The top layer of the SPED is fabricated using untreated cellulose paper with patterned hydrophobic "domains" that define channels that wick up blood samples for testing. These "micro?uidic channels" allow for accurate assays that change color to indicate specific testing results. A machine-vision diagnostic application also was created to automatically identify and quantify each of these "colorimetric" tests from a digital image of the SPED, perhaps taken with a cellphone, to provide fast diagnostic results to the user and to facilitate remote-expert consultation.

The bottom layer of the SPED is a "triboelectric generator," or TEG, which generates the electric current necessary to run the diagnostic test simply by rubbing or pressing it. The researchers also designed an inexpensive handheld device called a potentiostat, which is easily plugged into the SPED to automate the diagnostic tests so that they can be performed by untrained users. The battery powering the potentiostat can be recharged using the TEG built into the SPEDs.

"To our knowledge, this work reports the ?rst self-powered, paper-based devices capable of performing rapid, accurate, and sensitive electrochemical assays in combination with a low-cost, portable potentiostat that can be recharged using a paper-based TEG," Martinez said.

He co-authored the paper with graduate students Aniket Pal and Debkalpa Goswami; visiting scholars Hugo E. Cuellar and Heloisa F. N. Caurin; and Randy Kuang, a high school student who participated in the research.

The research paper describes the SPEDs, the portable potentiostat and a machine-vision algorithm that is able to recognize the color-coded information. SPEDs are compatible with mass-printing technologies, such as roll-to-roll printing or spray deposition. They can perform "multiplexed" analyses enabling the highly sensitive and accurate detection of various targets for a range of point-of-care testing applications. And they can be used to power other electronic devices to facilitate telemedicine applications in resource-limited settings.

The SPEDs were used to detect biomarkers such as glucose, uric acid and L-lactate, ketones, and white blood cells, which indicate factors related to liver and kidney function, malnutrition and anemia. Future versions of the technology will contain several additional layers for more complex assays to detect diseases such as dengue fever, yellow fever, malaria, HIV and hepatitis, Martinez said.

Aniket Pal, Hugo E Cuellar, Randy Kuang, Heloisa F N Caurin, Debkalpa Goswami, Ramses V Martinez.
Self-Powered, Paper-Based Electrochemical Devices for Sensitive Point-of-Care Testing.
Adv. Mater. Technol. 2017, 1700130. doi: 10.1002/admt.201700130.

Most Popular Now

Patient Safety must be Central to the De…

An EPR system brings together different patient information in one place, making it easier to access for healthcare professionals. This information can include patients' own notes, test results, observations by...

ChatGPT Shows Promise in Answering Patie…

The groundbreaking ChatGPT chatbot shows potential as a time-saving tool for responding to patient questions sent to the urologist's office, suggests a study in the September issue of Urology Practice®...

Survey: Most Americans Comfortable with …

Artificial intelligence (AI) is all around us - from smart home devices to entertainment and social media algorithms. But is AI okay in healthcare? A new national survey commissioned by...

AI Spots Cancer and Viral Infections at …

Researchers at the Centre for Genomic Regulation (CRG), the University of the Basque Country (UPV/EHU), Donostia International Physics Center (DIPC) and the Fundación Biofisica Bizkaia (FBB, located in Biofisika Institute)...

Video Gaming Improves Mental Well-Being

A pioneering study titled "Causal effect of video gaming on mental well-being in Japan 2020-2022," published in Nature Human Behaviour, has conducted the most comprehensive investigation to date on the...

Machine learning helps identify rheumato…

A machine-learning tool created by Weill Cornell Medicine and Hospital for Special Surgery (HSS) investigators can help distinguish subtypes of rheumatoid arthritis (RA), which may help scientists find ways to...

New Diabetes Research Links Blood Glucos…

As part of its ongoing exploration of vocal biomarkers and the role they can play in enhancing health outcomes, Klick Labs published a new study in Scientific Reports - confirming...

New AI Software could Make Diagnosing De…

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not...

A New AI Tool for Cancer

Scientists at Harvard Medical School have designed a versatile, ChatGPT-like AI model capable of performing an array of diagnostic tasks across multiple forms of cancers. The new AI system, described Sept...

Vision-Based ChatGPT Shows Deficits Inte…

Researchers evaluating the performance of ChatGPT-4 Vision found that the model performed well on text-based radiology exam questions but struggled to answer image-related questions accurately. The study's results were published...

Bayer Launches New Healthy-Aging Ecosyst…

Combining a scientifically formulated dietary supplement, a leading-edge wellness companion app, and a saliva-based a biological age test by Chronomics, Bayer is taking a big step in the emerging healthy-aging...

New AI-Driven Tool could Revolutionize B…

Researchers at the Icahn School of Medicine at Mount Sinai have developed a noninvasive technique that could dramatically improve the way doctors monitor intracranial hypertension, a condition where increased pressure...