Grid technology to help European cancer research project

The recently launched CancerGrid Project will bring together partners from industry and academia in the first ever large scale application of computer grid technology for finding and developing new anti-cancer agents.

The three-year multidisciplinary research programme funded by the EU will aim to combine new technologies with biology to enrich molecular libraries and increase the likelihood of discovering potential drugs to treat cancer.

"This innovative project utilizes grid-based computing technology for the automated design of chemical libraries, with the goal of discovering potential cancer treatments," said Michael Guaciaro, Ph.D., president and managing director of AMRI, one of the industrial partners in the project.

The project will employ the resources of grid computing to allow the researchers to tap into a powerful network of interconnected workstations able to process large amounts of data and reduce computational time.

Cancer affects millions of people and accounts for 13% of deaths around the world, according to the World Health Organization.

In the human genome, there is an estimated subset of approximately 3,000 genes that encode proteins, including novel cancer-related targets, which could be regulated with drug-like molecules.

The partners in the project will work towards developing specific chemical compound collections ('focused' chemical libraries) that interact with these cancer proteins.

"Our goal is to develop methods for creating chemical libraries containing molecules active against the newly emerging cancer targets," explained Gyorgy Dorman, head of science and technology at AMRI.

"The use of grid-aided technology should substantially increase both the likelihood of finding novel anti-cancer lead compounds, as well as increase the translation of basic knowledge into the application stage," he added.

This project is also expected to produce and validate a technology for in-silico design of chemical libraries and models that predict toxicity and target specificity. Once developed, these libraries will in theory be applicable to any drug discovery project.

For further information, please visit:
http://www.cancergrid.eu

Copyright ©European Communities, 2007
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...