Artificial Intelligence to Evaluate Brain Maturity of Preterm Infants

Researchers at the University of Helsinki and the Helsinki University Hospital (HUH), Finland, have developed software based on machine learning, which can independently interpret EEG signals from a premature infant and generate an estimate of the brain's functional maturity. Published in the journal Scientific Reports, the method is the first EEG-based brain maturity evaluation system in the world. It is more precise than other currently understood methods of evaluating the development of an infant's brain, and enables the automatic and objective monitoring of a premature infant's brain development.

"We currently track the development of an infant's weight, height and head circumference with growth charts. EEG monitoring combined with automatic analysis provides a practical tool for the monitoring of the neurological development of preterm infants and generates information which will help plan the best possible care for the individual child," says Professor Sampsa Vanhatalo from the University of Helsinki, who led the research.

"This method gives us a first-time opportunity to track the most crucial development of a preterm infant, the functional maturation of the brain, both during and after intensive care."

Late pregnancy is critical for fetal brain development

One in ten live births is a premature one, and approximately half of all patients in neonatal intensive care are there because of preterm birth. Late pregnancy is a time of very rapid brain development for the fetus - the brain's electrical activity changes almost every week. The brain must function in order to develop correctly.

The many health impediments associated with preterm birth can hinder brain development. Researchers found already in the 1980s that early health problems in preterm infants often resulted in slower brain development during the first months. In order to provide the best possible care and develop new forms of treatment, we should know how the brain functions of infants develop, but no objective and sufficiently precise methods for evaluating the early-stage maturity of the brain have been available.

The most tempting option for evaluating the maturation of the brain is to use EEG sensors placed on the scalp. This is a completely non-invasive, low-cost and risk-free method, which has been very popular during the past few years in monitoring brain activity at neonatal intensive care units.

"The practical problem with EEG monitoring is that analysing the EEG data has been slow and required special expertise from the doctor performing it. This problem may be solved reliably and globally by using automatic analysis as part of the EEG device," says Vanhatalo.

Machine learning and artificial intelligence to help preterm infants

The new EEG analysis software was primarily developed by Nathan Stevenson, an Australian engineer, who worked in Professor Vanhatalo's research group as an EU-funded Marie Curie Fellow. The research used an exceptionally extensive and well-controlled set of EEG measurement data from preterm infants, gathered in Professor Katrin Klebermass' research group at the Medical University of Vienna.

The analysis software is based on machine learning. A large amount of EEG data on preterm infants was fed into a computer, and the software calculated hundreds of computational features from each measurement without intervention from a doctor. With the help of a support vector machine algorithm, these features were combined to generate a reliable estimate of the EEG maturational age of the infant.

At the end of the study, the software was tested by comparing the EEG maturational age estimated by the software with the clinically known true age of the infant. In more than 80% of the cases, the true age of the infant and the computer-generated estimate were within two weeks of one another. The maturation estimate was so reliable and precise that in each of the 39 preterm infants in the study, the functional development of the brain could be tracked when the measurements were repeated every few weeks.

NJ Stevenson, L Oberdorfer, N Koolen, JM O'Toole, T Werther, K Klebermass-Schrehof, S Vanhatalo.
Functional maturation in preterm infants measured by serial recording of cortical activity.
Scientific Reports 7, 12969 (2017). doi: 10.1038/s41598-017-13537-3.

Most Popular Now

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...