Researchers 3-D Print Lifelike Artificial Organ Models

A team of researchers led by the University of Minnesota has 3D printed lifelike artificial organ models that mimic the exact anatomical structure, mechanical properties, and look and feel of real organs. These patient-specific organ models, which include integrated soft sensors, can be used for practice surgeries to improve surgical outcomes in thousands of patients worldwide.

The research was published today in the journal Advanced Materials Technologies. The researchers are submitting a patent on this technology.

"We are developing next-generation organ models for pre-operative practice. The organ models we are 3D printing are almost a perfect replica in terms of the look and feel of an individual's organ, using our custom-built 3D printers," said lead researcher Michael McAlpine, an associate professor of mechanical engineering in the University of Minnesota's College of Science and Engineering and a 2017 recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE).

"We think these organ models could be 'game-changers' for helping surgeons better plan and practice for surgery. We hope this will save lives by reducing medical errors during surgery," McAlpine added.

McAlpine said his team was originally contacted by Dr. Robert Sweet, a urologist at the University of Washington who previously worked at the University of Minnesota. Sweet was looking for more accurate 3D printed models of the prostate to practice surgeries.

Currently, most 3D printed organ models are made using hard plastics or rubbers. This limits their application for accurate prediction and replication of the organ's physical behavior during surgery. There are significant differences in the way these organs look and feel compared to their biological counterparts. They can be too hard to cut or suture. They also lack an ability to provide quantitative feedback.

In this study, the research team took MRI scans and tissue samples from three patients' prostates. Researchers tested the tissue and developed customized silicone-based inks that can be "tuned" to precisely match the mechanical properties of each patient's prostate tissue. These unique inks were used in a custom-built 3D printer by researchers at the University of Minnesota. The researchers then attached soft, 3D printed sensors to the organ models and observed the reaction of the model prostates during compression tests and the application of various surgical tools.

"The sensors could give surgeons real-time feedback on how much force they can use during surgery without damaging the tissue," said Kaiyan Qiu, a University of Minnesota mechanical engineering postdoctoral researcher and lead author of the paper. "This could change how surgeons think about personalized medicine and pre-operative practice."

In the future, researchers hope to use this new method to 3D print lifelike models of more complicated organs, using multiple inks. For instance, if the organ has a tumor or deformity, the surgeons would be able to see that in a patient-specific model and test various strategies for removing tumors or correcting complications. They also hope to someday explore applications beyond surgical practice.

"If we could replicate the function of these tissues and organs, we might someday even be able to create 'bionic organs' for transplants," McAlpine said. "I call this the 'Human X' project. It sounds a bit like science fiction, but if these synthetic organs look, feel, and act like real tissue or organs, we don't see why we couldn't 3D print them on demand to replace real organs."

Kaiyan Qiu, Zichen Zhao, Ghazaleh Haghiashtiani, Shuang-Zhuang Guo, Mingyu He, Ruitao Su, Zhijie Zhu, Didarul B Bhuiyan, Paari Murugan, Fanben Meng, Sung Hyun Park, Chih-Chang Chu, Brenda M Ogle, Daniel A Saltzman, Badrinath R Konety, Robert M Sweet, Michael C McAlpine.
3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors.
Adv. Mater. Technol. 2365-709X. doi: 10.1002/admt.201700235.

Most Popular Now

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...