Twitter can Reveal our Shared Mood

In the largest study of its kind, researchers from the University of Bristol have analysed mood indicators in text from 800 million anonymous messages posted on Twitter. These tweets were found to reflect strong patterns of positive and negative moods over the 24-hour day.

Circadian rhythms, widely referred to as the 'body clock', allows people's bodies to predict their needs over the dark and light periods of the day. Most of this circadian activity is regulated by a small region in the hypothalamus of the brain called the suprachiasmatic nucleus, which is particularly sensitive to light changes at dawn and dusk, and sends signals through nerves and hormones to every tissue in the body.

The research team looked at the use of words relating to positive and negative emotions, sadness, anger, and fatigue in Twitter over the course of four years. The public expressions of affect and fatigue were linked to the time they appeared on the social platform to reveal changes within the 24-hours. Whilst previous studies have shown a circadian variation for positive and negative emotions the current study was able to differentiate specific aspects of anger, sadness, and fatigue.

Lead author and machine learning researcher Dr Fabon Dzogang, in collaboration with neuroscientist and current British Neuroscience Association President, Professor Stafford Lightman from Bristol Medical School: THS, and Nello Cristianini, Professor of Artificial Intelligence from the Department of Engineering Mathematics, have found distinct patterns of positive emotions and sadness between the weekends and the weekdays, and evidence of variation of these patterns across the seasons.

Dr Fabon Dzogang, research associate in the Department of Computer Science, said: "Our research revealed strong circadian patterns for both positive and negative moods. The profiles of anger and fatigue were found remarkably stable across the seasons or between the weekdays/weekend. The patterns that our research revealed for the positive emotions and sadness showed more variability in response to these changing conditions, and higher levels of interaction with the onset of sunlight exposure. These techniques that we demonstrated on the social media provide valuable tools for the study of our emotions, and for the understanding of their interaction within the circadian rhythm."

Stafford Lightman, Professor of Medicine and co-author, added: "Since many mental health disorders are affected by circadian rhythms, we hope that this study will encourage others to use social media to help in our understanding of the brain and mental health disorders."

Fabon Dzogang, Stafford Lightman, Nello Cristianini.
Circadian mood variations in Twitter content.
Brain and Neuroscience Advances. doi: 10.1177/2398212817744501
.

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...