Digital Penicillin Production

For thousands of years, micro-organisms have been used to facilitate chemical reactions - in beer brewing, for example. However, biochemical processes are incredibly complex, with a multitude of reactions taking place simultaneously and influencing one another. There are countless parameters that play a role, not all of which can be directly measured.

Despite the difficulties involved, researchers at TU Wien are now working on examining these processes in detail. Now, in cooperation with pharmaceutical manufacturer Sandoz, TU Wien has succeeded in analysing and comprehensively replicating a penicillin production process using a computer model. This process has even enabled researchers to determine parameters that cannot be measured directly. Sandoz is now making use of these findings to keep a full overview of the processes in the bioreactor at all times, ensuring optimum quality.

Black box replaced by in-depth knowledge

Many chemical reactions are easy to understand: if hydrogen is burned with oxygen, water is produced - in a clearly predictable manner and in a volume that can be precisely calculated beforehand. But how can you calculate how quickly a fungus will grow and proliferate under the constantly changing conditions in a bioreactor?

"For a long time, processes like this were seen as a 'black box' that cannot be understood and that can only be effectively exploited with a lot of experience," says Prof. Christoph Herwig, who leads the research group for bioprocess technology at TU Wien's Institute of Chemical, Environmental and Bioscience Engineering. "Our approach is somewhat different: we want to analyse the chemical processes in a bioreactor in detail and determine the equations that describe these processes." The aim is to produce a mathematical model that accurately replicates these processes within the bioreactor.

"Many parameters that are vital to the process simply cannot be directly measured, such as the growth rate of the micro-organisms," explains Julian Kager, who is working with Sandoz GmbH as part of his dissertation. "This is precisely why a comprehensive mathematical model is so useful: we use accessible data from the production process in real time, such as the concentration of various substances in the bioreactor, and use our computer model to calculate the most probable state of the process." The parameters that can't be measured can therefore be calculated.

The model information can be used to optimise the nutrient supply to the cultivated cells while the process is ongoing.

The system of equations used to mathematically describe the bioprocess is as complex and multifaceted as the process itself. "The system of equations describes a non-linear dynamic system. Even the smallest variations in the starting conditions can have a huge impact," explains Kager. "This means it's not really possible to simply work out a solution by hand; instead, relatively elaborate computer simulations are required to obtain the needed results."

The process model and algorithms developed at TU Wien are now being used by Sandoz GmbH for its penicillin production process. "We are very pleased that our basic research has been adopted for use in industry so quickly and that our approach of biochemical modelling is now being used to facilitate the automated control of pharmaceutical production processes," says Julian Kager.

Julian Kagera, Christoph Herwigab, Ines Viktoria Stelzercd.
State estimation for a penicillin fed-batch process combining particle filtering methods with online and time delayed offline measurements.
Chemical Engineering Science, Volume 177, 23 February 2018, Pages 234-244. doi: 10.1016/j.ces.2017.11.049.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...