A New Way to Watch Brain Activity in Action

It's a neuroscientist's dream: being able to track the millions of interactions among brain cells in animals that move about freely, behaving as they would under natural circumstances. New technology developed at The Rockefeller University represents a big step toward realizing that goal.

The invention, reported today in Nature Methods, is expected to give researchers a dynamic tool to study the brain's role in various behaviors. Although it is designed for use on mice, information gleaned from it could someday shed light on neuronal activity in humans as well, says Alipasha Vaziri, who led the technology's development as head of the Laboratory of Neurotechnology and Biophysics. For example, it might allow us to better understand the neuronal basis of brain disorders such as autism and schizophrenia.

Vaziri says the tool provides an opening to an exciting range of discoveries. As an animal moves about its environment, for instance, some neurons direct spatial navigation while others receive sensory feedback from changes to the body's position or the visual system. "Until now, no one has been able to detect how these different neurons, which can be located at different depths within a volume of brain tissue, dynamically interact with each other in a freely moving rodent," says Vaziri, an associate professor at Rockefeller. Similarly, the tool can be used to record the interplay among neurons when two animals meet and interact socially.

High-tech headgear

The technology consists of a tiny microscope attached to a mouse's head and outfitted with a specialized group of lenses called a microlens array. These lenses enable the microscope to capture images from multiple angles and depths on a sensor chip, producing a three-dimensional record of neurons blinking on and off as they communicate with each other through electrochemical impulses. (In the experiments, the mouse neurons are genetically modified to light up when they become activated.) A coaxial cable attached to the top of the microscope transmits the data for recording. The head-mounted gear weighs about four grams, about as much as a mouse can support, but Vaziri expects that planned modifications will make it significantly lighter.

Once the microlens array has captured sensor images from within a volume of brain tissue, the next challenge is to process this raw data. Brain tissue is opaque, making it difficult to pinpoint the source of each neuronal light flash. Vaziri's team solved this problem, which is the result of so-called scattering, by developing a new computer algorithm. "The algorithm utilizes the statistical properties of neurons' distribution in space and in activity," Vaziri explains, "while extracting additional information from the scattered emission light. This enables their activity to be simultaneously and faithfully recorded within a volume despite of the highly scattering tissue properties."

The result is a clear image that shows individual neurons flashing in sequence.

Faster, more effective imaging

Vaziri's lab has previously applied this algorithm, known by the acronym SID, in studies in which the heads of the mice were secured in a fixed position. Their latest research is the first to demonstrate that these inventions can be used together with a tiny microscope called the Miniscope, developed by a collaborating team at the University of California Los Angeles, to measure neuronal activity volumetrically in unconstrained animals.

The technology, if widely adopted, could offer several advantages over two-photon microscopy, a broadly used neuroscience tool. For example, two-photon microscopy records neuronal activity within individual focal planes - thin, virtual "slices" of the sample - that then are combined to create a three-dimensional image. In contrast, Vaziri's method immediately captures data in three dimensions over an entire volume of tissue, making it faster and more effective.

Vaziri plans to continue developing tools to record neuronal activity in even larger portions of the brain than is currently possible, and at higher speeds and resolution. "We hope this work will ultimately lead to a deeper understanding of how the brain processes information underlying the generation of behavior," he says.

Oliver Skocek, Tobias Nöbauer, Lukas Weilguny, Francisca Martínez Traub, Chuying Naomi Xia, Maxim I Molodtsov, Abhinav Grama, Masahito Yamagata, Daniel Aharoni, David D Cox, Peyman Golshani, Alipasha Vaziri.
High-speed volumetric imaging of neuronal activity in freely moving rodents.
Nature Methods (2018). doi: 10.1038/s41592-018-0008-0.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...