New Study Reveals How Electronic Health Records can Benefit Clinical Trials

The study entitled "Long term extension of a randomised controlled trial of probiotics using electronic health records" led by researchers in the Swansea University Medical School and the College of Human and Health Sciences, was published in Scientific Reports. The findings demonstrate the potential of using anonymised routinely collected electronic health records, such as those linked in SAIL, for more complete trial results. Results showed that SAIL can help track trial participants, with long term monitoring of medical interventions and health outcomes, and new insights into population health.

Typically, RCTs are relatively short term, and due to costs and resources, have limited opportunity to be re-visited or extended which means the effects of treatments cannot be scrutinised beyond the duration of the study, typically 1-2 years.

With patients' consent, data analysts can match patients to their records and access data quickly. As a result, the cost of follow-up using routine data is potentially relatively small and does not increase with the number of participants.

The original RCT investigated the impact of probiotics taken during pregnancy on childhood asthma and eczema in a group of children at 6 months and then 2 years of age.

Professor Sue Jordan of Swansea University's College of Human and Health Science who led the study said: "In this study we reported on the feasibility and efficiency of electronic follow up, and compared it with traditional trial follow up. We gained new insights from outcomes electronically recorded 3 years after the end of the trial, and could then identify the differences between trial data and electronic data."

The use of electronic databases in clinical trials has been hailed as one of the major benefits of a nationwide electronic health records system. However, few studies have demonstrated this benefit, or formally assessed the relationship between traditional trial data and electronic health records databases."

Key research findings

  • Using SAIL, the retention of children from lower socio-economic groups was improved which helped reduce volunteer bias.
  • Results from the electronic follow up were more reliable due to reduced risk of bias, unreliability or inaccuracy in participants' recall.
  • New insights were gained from the electronic five year follow up, particularly for asthma, which typically appears after 2 years of age
  • For the electronic follow up at five years, retention was still high and free of bias in socio-economic status
  • Any future extension of the trial is straightforward.

Follow up of trial participants on anonymised routine electronic health care databases such as SAIL offers great potential to maximise the economic efficiency of trials and allow access to a fuller range of health information.

SAIL Associate Professor Kerina Jones is the academic lead for data governance and public engagement. She said: "SAIL is a world-class, privacy-protecting data linkage system that securely brings together routinely-collected health data.

SAIL is part-funded by the Welsh Government, and makes person-based health data available for genuine research purposes only where there is a potential for benefit. Because SAIL removes the identities of participants to protect their privacy and holds only anonymised data, researchers carry out their work without knowing the identities of the individuals."

Professor Jordan said: "The number of participants volunteering for RCTs is decreasing, particularly amongst the most economically disadvantaged. Trial data are vulnerable to misunderstandings of questionnaires or definitions of illness."

Professor Michael Gravenor, who led the data analysis for the study said: "These results lead us to conclude that using electronic health records have benefits relating to the cost-effective, long term monitoring of complex interventions which could have a positive impact for future clinical trial design."

Gareth Davies, Sue Jordan, Caroline J Brooks, Daniel Thayer, Melanie Storey, Gareth Morgan, Stephen Allen, Iveta Garaiova, Sue Plummer, Mike Gravenor.
Long term extension of a randomised controlled trial of probiotics using electronic health records.
Scientific Reportsvolume 8, Article number: 7668 (2018). doi: 10.1038/s41598-018-25954-z.

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...