Wearable Device can Predict Older Adults' Risk of Falling

Every year, more than one in three individuals aged 65 and older will experience a fall. Falls are the most common cause of injury in older adults, and can create ongoing health problems. But treatment and awareness of falling usually happens after a fall has already occurred. As a part of the NIH's Women's Health Initiative, researchers wanted to see if they could predict an individual's risk of falling so that preventative measures could be taken to reduce this risk.

New analysis has now made this prediction a reality.

The study involved 67 women, all over the age of 60, who were tested on their walking ability and asked about the number of falls they had experienced in the past year. Participants also wore a small device with motion sensors that measured their walking patterns for one week.

Bruce Schatz, head of the Department of Medical Information Science in the University of Illinois College of Medicine at Urbana-Champaign and faculty member of the IGB's Computing Genomes for Reproductive Health research theme, was asked to analyze the data from the study. He worked with colleagues from the Women's Health Initiative, including David Buchner from the Department of Kinesiology & Community Health, while supervising Illinois graduate students Andrew Hua and Zachary Quicksall, associated with the University of Illinois College of Medicine.

They found that data extracted automatically from the devices could accurately predict the participants' risk of falling, as measured by physical examinations of unsteadiness in standing and walking. Their findings were published in Nature Digital Medicine.

"Our prediction showed that we could very accurately tell the difference between people that were really stable and people that were unstable in some way," Schatz said.

Studies have shown that older individuals fall differently than younger individuals. Younger people fall if they misjudge something, such as a slippery surface. But older adults fall because their bodies are unstable, causing them to lose balance when walking or become unsteady when standing up and sitting down.

This difference gave researchers the idea that they might be able to measure this instability. The device they used, called an accelerometer, was able to measure the user's walking patterns and how unsteady they were. They combined this measurement with the individual's fall history to determine the risk of falling in the future.

Being able to predict the fall risk is significant because many older adults often don't pay attention to the fact that they are unstable until after they fall. But if they know they're at risk, they can do rehabilitation exercises to increase their strength and reduce their chance of falling.

Schatz sees the successful outcome of this research as a sign that, in the future, more wearable devices, or even smartphone apps, will be able to measure walking patterns and warn users of their fall risk.

Most cellphones today already have an accelerometer, the same sensor that was used in this study. Schatz envisions a future where everyone over 60 would have a phone app that constantly records their motion, requiring no input from the user. If the user's walking becomes unstable, the app could notify the user or their doctor, and they could begin preventative exercises.

"I work a lot with primary care physicians, and they love this (idea), because they only see people after they start falling," Schatz said. "At that point, it's already sort of too late."

This research relates to the larger idea of preventative medicine -- health care that can warn patients about health problems so they can take action and better manage the problem.

Predictions like these are difficult to make, but research experiments like this one make Schatz hopeful that progress is being made. More federally funded studies monitoring larger populations are being conducted more often, so predictive models developed for existing studies, such as the Women's Health Initiative, are important for future research. Additionally, wearable devices like those used in this study are becoming cheaper and more widely available.

These developments give Schatz hope that a future with successful predictive medicine is coming.

"The question is: is it known how to take the signal, how to take whatever comes out of (a device), and predict something that's useful?" he said. "I believe strongly the answer is yes."

Schatz sees value in doing fundamental research that could solve major health problems, like falls in older adults. Most people are aware that it's a common problem, but Schatz said there is a sense of hopelessness about this issue - if it happens to so many older adults, then what can be done?

"There is a solution which is completely workable and isn't very expensive, but requires different behavior," Schatz said. "That message is not getting out."

He predicts that the quality of life among older adults will improve as medicine and health care become more predictive and effective.

"The future is different," Schatz said. "And it's because of projects like this."

Andrew Hua, Zachary Quicksal, Chongzhi Di, Robert Motl, Andrea Z LaCroix, Bruce Schatz, David M Buchner.
Accelerometer-based predictive models of fall risk in older women: a pilot study.
npj Digital Medicinevolume 1, Article number: 25 (2018). doi: 10.1038/s41746-018-0033-5.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...