Doctors Rely on More than Just Data for Medical Decision Making

Many technology companies are working on artificial intelligence systems that can analyze medical data to help diagnose or treat health problems. Such systems raise the question of whether this kind of technology can perform as well as a human doctor. A new study from MIT computer scientists suggests that human doctors provide a dimension that, as yet, artificial intelligence does not. By analyzing doctors' written notes on intensive-care-unit patients, the researchers found that the doctors' "gut feelings" about a particular patient's condition played a significant role in determining how many tests they ordered for the patient.

"There's something about a doctor's experience, and their years of training and practice, that allows them to know in a more comprehensive sense, beyond just the list of symptoms, whether you're doing well or you're not," says Mohammad Ghassemi, a research affiliate at MIT's Institute for Medical Engineering and Science (IMES). "They're tapping into something that the machine may not be seeing."

This intuition plays an even stronger role during the first day or two of a patient's hospital stay, when the amount of data doctors have on patients is less than on subsequent days.

Ghassemi and computer science graduate student Tuka Alhanai are the lead authors of the paper, which will be presented at the IEEE Engineering in Medicine and Biology Society conference on July 20. Other MIT authors of the paper are Jesse Raffa, an IMES research scientist, and Roger Mark, a professor of health sciences and technology and of electrical engineering and computer science. Shamim Nemati and Falgun Chokshi of Emory University are also authors of the study.

How to measure feelings

Doctors consider a huge number of factors - including symptoms, severity of illness, family history, and lifestyle habits - when deciding what kinds of exams to order for their patients. In addition to those factors, Ghassemi, Alhanai, and their colleagues wondered whether a doctor's "gut feelings" about a patient also plays a role in their decision-making.

"That gut feeling is probably informed by a history of experience that doctors have," Ghassemi says. "It's sort of like how when I was a kid, my mom could just look at me and tell that I had done something wrong. That's not because of something mystical, but because she had so much experience dealing with me when I had done something wrong that a simple glance had some data in it."

To try to reveal whether this kind of intuition plays a role in doctors' decisions, the researchers performed sentiment analysis of doctors' written notes. Sentiment analysis, which is often used for gauging consumer attitudes, is based on computer algorithms that examine written language and tally positive or negative sentiments associated with words used in the text.

The researchers performed their analysis on the MIMIC database, a collection of medical records from 60,000 ICU patients admitted to Beth Israel Deaconess Medical Center in Boston over a 10-year period. This database includes doctors' notes on the patients as well as severity of illness, diagnostic imaging exams, and several other factors.

The researchers wanted to determine what, if anything, the doctors' notes added on top of the information available in the medical records. They computed sentiment scores from the notes to see if there was any correlation with how many diagnostic imaging tests the doctors ordered for patients.

If medical data alone was driving doctors' decisions, then sentiment would not have any correlation with the number of tests ordered. However, the researchers found that when they accounted for all other factors, the doctors' sentiments did indeed help predict how many tests they would order. This effect was strongest at the beginning of a patient's hospital stay, when doctors had less medical information to go on, and then declined as time went by.

They also found that when doctors felt more pessimistic about a patient's condition, they ordered more testing, but only up to a certain point. If they felt very negatively about the patient's condition, they ordered fewer tests.

"Clearly the physicians are using something that is not in the data to drive part of their decision making," Alhanai says. "What's important is that some of those unseen effects are reflected by their sentiment."

Sentimental machines

Next, the researchers hope to learn more about just what factors contribute to doctors' gut feelings. That could potentially lead to the development of artificial intelligence systems that could learn to incorporate the same information that doctors are using to evaluate patients.

"The question is, can you get the machine to do something like that? It would be very interesting to teach the machine to approximate what the doctor encodes in their sentiment by using data not currently captured by electronic health systems, such as their speech," Alhanai says.

The research was funded by the National Institutes of Health (NIH) Neuroimaging Training Grant, the Abu Dhabi Education Council, the NIH Critical Care Informatics Grant, and the NIH Research Resource for Complex Physiologic Signals Grant.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...