Big Data Approach Shown to be Effective for Evaluating Autism Treatments

Researchers at Rensselaer Polytechnic Institute who developed a blood test to help diagnose autism spectrum disorder have now successfully applied their distinctive big data-based approach to evaluating possible treatments. The findings, recently published in Frontiers in Cellular Neuroscience, have the potential to accelerate the development of successful medical interventions. One of the challenges in assessing the effectiveness of a treatment for autism is how to measure improvement. Currently, diagnosis and evaluating the success of an intervention rely heavily on observations by professionals and caretakers.

"Having some kind of a measure that measures something that's happening inside the body is really important," said Juergen Hahn, systems biologist, professor, and head of the Rensselaer Department of Biomedical Engineering.

Hahn and his team use machine-learning algorithms to analyze complex data sets. That is how he previously discovered patterns with certain metabolites in the blood of children with autism that can be used to successfully predict diagnosis. You can watch Hahn discuss that here.

In this most recent analysis, the team used a similar set of measurements from three different clinical trials that examined potential metabolic interventions. The researchers were able to compare data from before and after treatment, and look for correlations between those results and any observed changes of adaptive behavior.

"What we did here is showed that if you actively try to change concentrations of these metabolites that are being measured, then you will also see changes in the behavior," Hahn said.

Hahn said that this approach was unique in that it analyzed multiple medical markers at the same time, unveiling correlations not seen in the data if each measurement is investigated individually.

"It can speed up the development process because you now have an additional tool that tells you how well a treatment has worked," he said.

Hahn expects this type of approach to become an important component of clinical trials for autism in the future. "Having medical tests that measure quantities directly related to the physiology is important and we hope that they get incorporated into future trials," he said.

Hahn, a member of the Rensselaer Center for Biotechnology and Interdisciplinary Studies, worked on this study with Rensselaer graduate student Troy Vargason, undergraduate student Emily Roth, and Uwe Kruger, who is a professor of practice in the biomedical engineering department.

In addition to developing and successfully testing the first physiological test for autism and this recent work, Hahn has also worked with colleagues to apply his method to determining a pregnant mother's relative risk for having a child with autism spectrum disorder.

Vargason T, Kruger U, Roth E, Delhey LM, Tippett M, Rose S, Bennuri SC, Slattery JC, Melnyk S, James SJ, Frye RE and Hahn J.
Comparison of Three Clinical Trial Treatments for Autism Spectrum Disorder Through Multivariate Analysis of Changes in Metabolic Profiles and Adaptive Behavior.
Front. Cell. Neurosci. 12:503. doi: 10.3389/fncel.2018.00503.

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...