New AI Toolkit is the 'Scientist that never Sleeps'

Researchers have developed a new AI-driven platform that can analyse how pathogens infect our cells with the precision of a trained biologist. The platform, HRMAn ('Herman'), which stands for Host Response to Microbe Analysis, is open-source, easy-to-use and can be tailored for different pathogens including Salmonella enterica.

Pioneered by scientists at the Francis Crick Institute and UCL, HRMAn uses deep neural networks to analyse complex patterns in images of pathogen and human ('host') cell interactions, pulling out the same detailed characteristics that scientists do by-hand. The research is published in the open access journal eLife, which includes a link to download the platform and access tutorial videos.

"What used to be a manual, time-consuming task for biologists now takes us a matter of minutes on a computer, enabling us to learn more about infectious pathogens and how our bodies respond to them, more quickly and more precisely," says Eva Frickel, Group Leader at the Crick, who led the project. "HRMAn can actually see host-pathogen interactions like a biologist, but unlike us, it doesn't get tired and need to sleep!"

To demonstrate the power of HRMAn - which runs on the KNIME platform - the team used it to analyse the body's response to Toxoplasma gondii, a parasite that replicates in cats and is thought to be carried by more than a third of the world's population.

Researchers in the Crick's High Throughput Screening facility collected over 30,000 microscope images of five different types of Toxoplasma-infected human cells and loaded them into HRMAn for analysis. HRMAn detected and analysed over 175,000 pathogen-containing cellular compartments, providing detailed information about the number of parasites per cell, the location of the parasites within the cells, and how many cell proteins interacted with the parasites, among other variables.

"Previous attempts at automating host-pathogen image analysis failed to capture this level of detail," says Artur Yakimovich, Research Associate in Jason Mercer's lab at the MRC LMCB at UCL and co-first author of the study. "Using the same sorts of algorithms that run self-driving cars, we've created a platform that boosts the precision of high volume biological data analysis, which has revolutionised what we can do in the lab. AI algorithms come in handy when the platform evaluates the image-based data in a way a trained specialist would. It's also really easy to use, even for scientists with little to no knowledge of coding."

The team also used HRMAn to analyse Salmonella enterica - a bacterial pathogen 16 times smaller than Toxoplasma, demonstrating its versatility for studying different pathogens.

"Our team uses HRMAn to answer specific questions about host-pathogen interactions, but it has far-reaching implications outside the field too," says Daniel Fisch, Crick PhD student and co-first author of the study. "HRMAn can analyse any fluorescence image, making it relevant for lots of different areas of biology, including cancer research."

Daniel Fisch, Artur Yakimovich, Barbara Clough, Joseph Wright, Monique Bunyan, Michael Howell, Jason Mercer, Eva Frickel.
Defining host–pathogen interactions employing an artificial intelligence workflow.
eLife 2019;8:e40560. doi: 10.7554/eLife.40560.

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Routine AI Assistance may Lead to Loss o…

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...