Artificial Intelligence Solution Improves Clinical Trial Recruitment

Clinical trials are a critical tool for getting new treatments to people who need them, but research shows that difficulty finding the right volunteer subjects can undermine the effectiveness of these studies. Researchers at Cincinnati Children's Hospital Medical Center designed and tested a new computerized solution that used artificial intelligence (AI) to effectively identify eligible subjects from Electronic Health Records (EHRs), allowing busy clinical staff to focus their limited time on evaluating the highest quality candidates.

The study is published online in JMIR Medical Informatics. It shows that compared to manually screening EHRs to identify study candidates, the system--called the Automated Clinical Trial Eligibility Screener© (ACTES)--reduced patient screening time by 34 percent and improved patient enrollment by 11.1 percent. The system also improved the number of patients screened by 14.7 percent and those approached by 11.1 percent.

Busy emergency departments often serve as excellent locations for clinical trial coordinators to find people who may be good study candidates. According to the study's lead investigator, Yizhao Ni, PhD, Division of Biomedical Informatics, ACTES is designed to streamline what often proves to be inefficient clinical trial recruiting process that doesn't always catch enough qualified candidates.

"Because of the large volume of data documented in EHRs, the recruiting processes used now to find relevant information are very labor intensive within the short time frame needed," said Ni. "By leveraging natural language processing and machine learning technologies, ACTES was able to quickly analyze different types of data and automatically determine patients' suitability for clinical trials."

How it Works

The system has natural language processing, which allows computers to understand and interpret human language as the system analyzes large amounts of linguistic data. Machine learning allows computerized systems to automatically learn and evolve from experience without specifically being programmed. This makes it possible for computer programs to process data, extract information, and generate knowledge independently.

The automated system extracts structured information such as patient demographics and clinical assessments from EHRs. It also identifies unstructured information from clinical notes, including the patients' clinical conditions, symptoms, treatments and so forth. The extracted information is then matched with eligibility requirements to determine a subject's suitability for a specific clinical trial.

The system's machine learning component also allows it to learn from historical enrollments to improve its future recommendations, according to the researchers. Much of the analyses are handled by carefully designed AI algorithms, essentially procedures or formulas that computers use to solve problems by performing a set sequence of specified actions.

Advanced to Live Clinical Setting

Previously the system was successfully pilot tested in a retrospective study published in 2015 by the Journal of the American Medical Informatics Association. The current study tested the solution prospectively and in real time in a busy emergency department environment, where clinical research coordinators recruited patients for six different pediatric clinical trials involving different diseases.

Using the technology in a live clinical environment involved significant collaboration between data scientists, application developers, information service technicians and the end users, clinical staff.

"Thanks to the institution's collaborative environment, we successfully incorporated different groups of experts in designing the integration process of this AI solution." Ni said.

Ni Y, Bermudez M, Kennebeck S, Liddy-Hicks S, Dexheimer J.
A Real-Time Automated Patient Screening System for Clinical Trials Eligibility in an Emergency Department: Design and Evaluation.
JMIR Med Inform 2019;7(3):e14185. doi: 10.2196/14185.

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...