Using a Smartphone to Detect Norovirus

A little bit of norovirus - the highly infectious microbe that causes about 20 million cases of food poisoning in the United States each year - goes a long way. Just 10 particles of the virus can cause illness in humans. A team of University of Arizona researchers has created a simple, portable and inexpensive method for detecting extremely low levels of norovirus.

Jeong-Yeol Yoon, a researcher in the Department of Biomedical Engineering; Soo Chung, a biosystems engineering doctoral student who works in Yoon's Biosensors Lab; and Kelly A. Reynolds, Chair of the Department of Community, Environment and Policy in the Mel & Enid Zuckerman College of Public Health, led the project. The team published their results in ACS Omega, the official journal of the American Chemical Society, and Yoon is presenting the research at the ACS Fall 2019 National Meeting & Exposition in San Diego this week.

"Advances in rapid monitoring of human viruses in water are essential for protecting public health," Reynolds said. "This rapid, low-cost water quality monitoring technology could be a transformational tool for reducing both local and global disease burdens."

The National Science Foundation Water and Environmental Technology Center at the UA and Tucson Water both provided funding for this research. While norovirus is often associated with cruise ships, it can also spread quickly through a community via its water supply. It causes about 200,000 deaths globally each year.

Keeping Components Simple

Devices to detect norovirus in small quantities do already exist, but they typically require a laboratory setting with an array of microscopes, lasers and spectrometers that can cost thousands of dollars. To detect norovirus in the field, such as on cruise ships or in municipal water wells, the team decided to use much simpler materials: paper, in the form of microfluidic chips, and a smartphone.

"Paper substrate is very cheap and easy to store, and we can fabricate these chips easily," Chung said. "The fibrous structure of paper also allows liquid to flow spontaneously without using the pumping systems other chips, such as silicon chips, usually require."

However, scientists usually detect contaminants on the chips by measuring the scattering and reflection of light in a sample, and paper's porousness and opacity can cause background scattering that interferes with imaging and makes it difficult to detect very small concentrations of a virus. So, the group developed a new way to detect norovirus, by counting fluorescent beads rather than measuring light intensity.

The process starts with adding potentially contaminated water to one end of a paper microfluidic chip. To the other end, a tester adds tiny, fluorescent polystyrene beads (picture the little white balls inside of a bean bag - these are the same material, but much smaller). Each bead is attached to an antibody against norovirus. If norovirus is present, several of the antibodies attach to each virus particle, creating a little clump of fluorescent beads.

"Norovirus particles are too small to be imaged by a smartphone microscope, and so are antibodies," Yoon said. "But when you have two or three or more of these beads joined together, that indicates that the norovirus is there, causing the beads to aggregate."

These clumps of beads are large enough for a smartphone microscope to detect and photograph. Then, a smartphone app the researchers created counts the number of illuminated pixels in the image to identify the number of aggregated beads, and subsequently, the number of norovirus particles in the sample. That's another advantage of the paper chip: Through capillary action, the groups of beads spread out along the paper, making them easier to count. The most expensive component of the whole device - the smartphone microscope - costs less than $50. It is also simple to use.

"You don't have to be a scientist or an engineer to run the device," Yoon said. "Analysis will be done automatically by the smartphone app, so all you have to worry about is loading a sample of water onto the chip."

In the future, the team hopes to develop methods for detecting norovirus infections in patients even earlier, and to expand their smartphone monitoring platform to detect other hazards, such as potentially cancer-causing chemicals. They also plan to spread the platform's use across the globe, fighting and detecting far-reaching diseases with tools that are just as widespread.

Soo Chung, Lane E Breshears, Sean Perea, Christina M Morrison, Walter Q Betancourt, Kelly A Reynolds, Jeong-Yeol Yoon.
Smartphone-Based Paper Microfluidic Particulometry of Norovirus from Environmental Water Samples at the Single Copy Level.
CS Omega 20194611180-11188, June 27, 2019. doi: 10.1021/acsomega.9b00772.

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...