Free Tool Simplifies Cancer Research

Every cell contains a vast number of proteins, each of which has a specific function, for example as a receptor for another molecule or an enzyme that catalyses chemical reactions. Disorders of such mechanisms can seriously affect a cell and cause diseases such as cancer, in which the sick cell functions in a fundamentally different way to a healthy cell. It is therefore very common for a drug to have a protein as its target, one that the substance either inhibits or stimulates the production or uptake of. At the same time, there are a great many approved drugs with a tried and tested effect on certain diseases but without a known protein target. For such substances, it is said that the mechanism of action is either wholly or partly unknown.

Scientists are therefore interested in developing a relatively straightforward method able to identify which proteins are affected by a certain drug. Some such methods are already available, but all have their shortcomings. Researchers at Karolinska Institutet have now made use of these methods to create a new tool that gives more reliable and precise results.

The researchers developed their method by experimenting on lung cancer cells treated with 56 different kinds of drug. For each of the drugs they first worked out the dose that kills half of the cells after 48 hours (LC50) and then used this dose for all the drugs. Once half of the cells had died, they examined each cell's proteome (i.e. which proteins are present and their abundances) to ascertain which proteins the drugs targeted. In further experiments, they tested the drugs on other cells from breast and intestinal tumours, and drew conclusions about the extent to which the drugs are specific or general in their targeting of cancer cells.

The results of these experiments are described in the searchable database that the researchers have now created (see link below), while the method itself is detailed in the article published in Nature Communications. The idea is for other researchers to be able to perform similar experiments with other drugs using the same model, and to thus expand the database with more target proteins for more substances.

"We find that the cells are killed in different ways by different drugs," says Roman Zubarev, professor of medical proteomics at Karolinska Institutet. "Not so long ago we used to think that cells could only die in three ways - necrosis, apoptosis or autophagy - but now we've observed at least thirteen different ways in which cells can die. This method can help to speed up certain parts of the process of new drug development or improve our understanding of existing drugs."

Amir Ata Saei, Christian Michel Beusch, Alexey Chernobrovkin, Pierre Sabatier, Bo Zhang, Ülkü Güler Tokat, Eleni Stergiou, Massimiliano Gaetani, Ákos Végvári, Roman A Zubarev.
ProTargetMiner as a proteome signature library of anticancer molecules for functional discovery.
Nat Commun 10, 5715, 2019. doi: 10.1038/s41467-019-13582-8.

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Why the NHS is Seeking to Make Media Ser…

Opinion Article by Dean Moody, Healthcare Services Director, Airwave Healthcare. Tim Kelsey and Martha Lane Fox called for WiFi to be made available free of charge throughout the NHS back in...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...