Edible 'Security Tag' to Protect Drugs from Counterfeit

Manufacturing prescription drugs with distinct markings, colors, shapes or packaging isn't enough to protect them from counterfeiting, U.S. Drug Enforcement Administration reports have shown. Purdue University researchers are aiming to stump counterfeiters with an edible "security tag" embedded into medicine. To imitate the drug, a counterfeiter would have to uncrack a complicated puzzle of patterns not fully visible to the naked eye.

The work is published in the journal Nature Communications.

Fake medicine is a thriving business, making up at least 10% of global pharmaceutical commerce while also claiming thousands of lives each year.

In the U.S., counterfeit drugs range from cancer and diabetes treatment to erectile dysfunction medication. Counterfeit opioids have caused deaths in 46 states.

Tagging drugs would not only guard against fakery, but also help pharmacies better verify the legitimacy of a drug before selling to consumers.

"Every single tag is unique, offering a much higher level of security," said Young Kim, an associate professor in Purdue's Weldon School of Biomedical Engineering.

The tag acts as a digital fingerprint for each drug capsule or tablet, using an authentication technique called "physical unclonable functions," or PUF, that was originally developed for information and hardware security.

PUFs have the ability to generate a different response each time that they are stimulated, rendering them unpredictable and extremely difficult to duplicate. Even the manufacturer wouldn't be able to re-create an identical PUF tag.

Kim's group is the first to create an edible PUF - a thin, transparent film made of silk proteins and fluorescent proteins genetically fused together. Because the tag is easily digestible and made entirely of proteins, it can be consumed as part of a pill or tablet.

Shining various LED light sources on the tag excites the fluorescent silk microparticles, causing them to generate a different random pattern each time. The microparticles emit cyan, green, yellow or red fluorescent colors.

Digital bits can then be extracted from an image of those patterns to produce a security key, which a pharmacy or patient would use to confirm that a drug is authentic.

The researchers are currently converting this process to a smartphone app for both pharmacies and consumers.

"Our concept is to use a smartphone to shine an LED light on the tag and take a picture of it. The app then identifies if the medicine is genuine or fake," said Jung Woo Leem, a postdoctoral associate in biomedical engineering at Purdue.

The tag also has the potential to hold much more information than simply a confirmation of what the drug is, Leem said, such as the dose and expiration date.

Leem found that the tag works for at least a two-month period without the proteins degrading. Next, the team will need to confirm that the tag could last as long as a drug does and that it doesn't affect a medicine's key ingredients or potency.

Jung Woo Leem, Min Seok Kim, Seung Ho Choi, Seong-Ryul Kim, Seong-Wan Kim, Young Min Song, Robert J Young, Young L Kim.
Edible unclonable functions.
Nature Communications volume 11, Article number: 328, 2020. doi: 10.1038/s41467-019-14066-5.

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...