Accurate Mapping of Human Travel Patterns with Global Smartphone Data

Understanding people's short- and long-distance travel patterns can inform economic development, urban planning, and responses to natural disasters, wars and conflicts, disease outbreaks like the COVID-19 pandemic, and more. A new global mapping method, developed by scientists from Boston Children's Hospital and the University of Oxford, provides global estimates of human mobility at much greater resolution than was possible before. It is described in a paper published May 18 in Nature Human Behaviour.

Data scientists led by Moritz Kraemer, DPhil, of Boston Children's and the University of Oxford, and John Brownstein, PhD, head of the Computational Epidemiology Lab at Boston Children's, aggregated weekly human movement data from Google Location data in 2016. This captured the movements of 300 million mobile phone users from almost all countries of the world. The scientists estimate that their work captured 65 percent of inhabited land surface representing about 2.9 billion people, a greater reach than previous mobility studies.

"This dataset from Google provides an amazing leap forward in our ability to understand population mobility," says Brownstein, who is also chief innovation officer at Boston Children's. "As evidenced by the emergency of COVID-19, being able to quantify movement can fuel our ability to track outbreaks, predict populations at risk and help us evaluate the effectiveness of interventions."

Incorporating statistical machine learning techniques, the results were fine-grained enough to allow comparisons of movement patterns country by country and based on factors like local geography, infrastructure, degree of urbanization, and income, which may affect people's capacity to respond to societal and economic changes.

The data revealed many clear patterns. For example, human movements peaked around traditional vacation times and holidays such as Easter, the Hajj, and, in the U.S., Thanksgiving. Movements were greater in areas with higher populations and smartphone usage. Weather patterns (extreme cold, monsoons) clearly affected travel patterns. In certain countries, cross-border labor migrations could be detected, and large migration flows were detected from countries experiencing crises, such as Syria.

In low-income settings, movements tend to focus around individuals' home locations; long-distance movements were recorded much less frequently compared to people in high-income settings.

"We hope that our findings can help understand why diseases may spread faster in some regions than in others, and ultimately become the baseline for predicting disease propagation," says Kraemer, now in the Department of Zoology at Oxford.

The researchers acknowledge the limitations of their study. For example, they only had access to data from 2016, and while mobile phones are ubiquitous worldwide, subscriptions and service vary by income and geography. They are now expanding upon its work to map real-time shifts in human mobility during the COVID-19 pandemic.

"We anticipate that, by measuring these changes in real time, we will substantially improve our ability to forecast global phenomena, including infectious disease propagation," they write.

Moritz UG Kraemer, Adam Sadilek, Qian Zhang, Nahema A Marchal, Gaurav Tuli, Emily L Cohn, Yulin Hswen, T Alex Perkins, David L Smith, Robert C Reiner Jr, John S Brownstein.
Mapping global variation in human mobility.
Nat Hum Behav, 2020. doi: 10.1038/s41562-020-0875-0

Most Popular Now

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...