Accurate Mapping of Human Travel Patterns with Global Smartphone Data

Understanding people's short- and long-distance travel patterns can inform economic development, urban planning, and responses to natural disasters, wars and conflicts, disease outbreaks like the COVID-19 pandemic, and more. A new global mapping method, developed by scientists from Boston Children's Hospital and the University of Oxford, provides global estimates of human mobility at much greater resolution than was possible before. It is described in a paper published May 18 in Nature Human Behaviour.

Data scientists led by Moritz Kraemer, DPhil, of Boston Children's and the University of Oxford, and John Brownstein, PhD, head of the Computational Epidemiology Lab at Boston Children's, aggregated weekly human movement data from Google Location data in 2016. This captured the movements of 300 million mobile phone users from almost all countries of the world. The scientists estimate that their work captured 65 percent of inhabited land surface representing about 2.9 billion people, a greater reach than previous mobility studies.

"This dataset from Google provides an amazing leap forward in our ability to understand population mobility," says Brownstein, who is also chief innovation officer at Boston Children's. "As evidenced by the emergency of COVID-19, being able to quantify movement can fuel our ability to track outbreaks, predict populations at risk and help us evaluate the effectiveness of interventions."

Incorporating statistical machine learning techniques, the results were fine-grained enough to allow comparisons of movement patterns country by country and based on factors like local geography, infrastructure, degree of urbanization, and income, which may affect people's capacity to respond to societal and economic changes.

The data revealed many clear patterns. For example, human movements peaked around traditional vacation times and holidays such as Easter, the Hajj, and, in the U.S., Thanksgiving. Movements were greater in areas with higher populations and smartphone usage. Weather patterns (extreme cold, monsoons) clearly affected travel patterns. In certain countries, cross-border labor migrations could be detected, and large migration flows were detected from countries experiencing crises, such as Syria.

In low-income settings, movements tend to focus around individuals' home locations; long-distance movements were recorded much less frequently compared to people in high-income settings.

"We hope that our findings can help understand why diseases may spread faster in some regions than in others, and ultimately become the baseline for predicting disease propagation," says Kraemer, now in the Department of Zoology at Oxford.

The researchers acknowledge the limitations of their study. For example, they only had access to data from 2016, and while mobile phones are ubiquitous worldwide, subscriptions and service vary by income and geography. They are now expanding upon its work to map real-time shifts in human mobility during the COVID-19 pandemic.

"We anticipate that, by measuring these changes in real time, we will substantially improve our ability to forecast global phenomena, including infectious disease propagation," they write.

Moritz UG Kraemer, Adam Sadilek, Qian Zhang, Nahema A Marchal, Gaurav Tuli, Emily L Cohn, Yulin Hswen, T Alex Perkins, David L Smith, Robert C Reiner Jr, John S Brownstein.
Mapping global variation in human mobility.
Nat Hum Behav, 2020. doi: 10.1038/s41562-020-0875-0

Most Popular Now

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...