Researchers Identify Healthcare Data Defects

Researchers at the University of Maryland, Baltimore County (UMBC) have developed a method to investigate the quality of healthcare data using a systematic approach, which is based on creating a taxonomy for data defects thorough literature review and examination of data. Using that taxonomy, the researchers developed software that automatically detects data defects effectively and efficiently.

The research is published in the Journal of the American Medical Informatics Association (JAMIA), and is led by Günes Koru, FAMIA, professor of information systems, and Yili Zhang, a former graduate student in Koru's lab who is now a postdoctoral fellow at Northwestern University. The paper stresses that the prevalence of defects in some of the existing healthcare data can be quite high. This must be addressed to better leverage the data to improve the quality of care, reduce costs, and achieve better healthcare outcomes. The team collaborated with an anonymous healthcare organization using real healthcare datasets.

Though many researchers today are involved in the analysis of healthcare data and are invested in its importance, there is very little research being done on the quality of the data being analyzed. Ultimately, this creates a far-reaching problem because important findings from the data may be less meaningful than assumed unless significant effort and money can be invested to deal with data quality problems with ad-hoc methods. For instance, much of the data that Koru's team analyzed contained errors of duplication, mismatched formatting and incorrect syntax.

Identifying these defects in healthcare data is deeply important when it comes to healthcare facilities providing essential services. Koru explains how healthcare facilities use the data collected. Healthcare organizations must "improve upon their services based on that data, and collect more data. If we can keep this cycle going, we can actually learn and improve more quickly, which is the main idea behind the concept of Learning Health Systems, and doing so is all the more important in the COVID-19 era," he says.

In the last decade, healthcare providers in the U.S. made a large leap from keeping patient records on paper to containing all patient information in computerized databases. This jump is significant because of the opportunity it provides for analysis, but researchers are still trying to learn how to effectively leverage the data as an asset.

Koru positions his team's research on data quality as being between the fields that are working to leverage data and the fields that are working to generate it. If the data itself--the bridge that connects the two fields - contains many inconsistencies and problems, then the relevant information cannot be used to provide better outcomes for patients and facilities.

In the future, Koru will continue to work with the partner facility's healthcare professionals to build a path forward. He will collaborate further to improve the quality of data and sustain an operation that bases much of its success on the data that it can gather from health services. His team will work with healthcare administration professionals when the software tools developed through this research are adopted in organizational settings to ensure the usability and usefulness of the tools.

"The taxonomy will help data stewards to identify, understand, and manage potential data quality problems in their future work," says Zhang.

Now more than ever, healthcare facilities are relying on strong data to support patients and the healthcare field as a whole. Koru and Zhang have found that collaborations between data researchers and healthcare organizations can generate effective solutions to the problem of data quality improvement.

Yili Zhang, Güneş Koru.
Understanding and detecting defects in healthcare administration data: Toward higher data quality to better support healthcare operations and decisions.
Journal of the American Medical Informatics Association, March 2020. doi: 10.1093/jamia/ocz201

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

To be Happier, Take a Vacation... from Y…

Today, nearly every American - 91% - owns a cellphone that can access the internet, according to the Pew Research Center. In 2011, only about one-third did. Another study finds...

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...