Call for Papers - Special Issue of Expert Systems

Expert Systems seeks original manuscripts for a Special Issue on Advances in Medical Decision Support Systems scheduled to appear in October 2008.

The foundation for any medical decision support is the medical knowledge base which contains the necessary rules and facts. This knowledge needs to be acquired from information and data in the fields of interest, such as medicine. Three general methodologies to acquire this knowledge can be distinguished: traditional expert systems, evidence-based methods, statistical and artificial intelligence methods. The medical decision support system consists of differential diagnosis, computer-assisted instruction, consultation components and their subsystems. The differential diagnosis component contains three subsystems: artificial neural network (ANN) model, time series analysis and medical image analysis. Time series analysis is based on the extraction of information from medical signal data. Medical image analysis can be used for medical decision making. Important tools in modern decision-making, in any field, include those that allow the decision-maker to assign an object to an appropriate group, or classification. Clinical decision-making is a challenging, multifaceted process. Its goals are precision in diagnosis and institution of efficacious treatment. Achieving these objectives involves access to pertinent data and application of previous knowledge to the analysis of new data in order to recognize patterns and relations. As the volume and complexity of data have increased, use of digital computers to support data analysis has become a necessity. In addition to computerization of standard statistical analysis, several other techniques for computer-aided data classification and reduction, generally referred to as ANN, have evolved. This special issue will focus on illustrative and detailed information about medical decision support systems and feature extraction/selection for automated diagnostic systems.

The focus of this special issue is on advances in medical decision support systems including determination of optimum classification schemes for the problem under study and also to infer clues about the extracted features. Topics include, but are not limited to, the following:

  • Bioinformatics and Computational Biology
  • Neural Networks and Support Vector Machines in Biological Signal Processing
  • Decision Support Systems and Computer Aided Diagnosis
  • Biomedical Signal Processing
  • Biomedical Imaging and Image Processing
  • Modelling, Simulation, Systems, and Control

Paper submission: Submitted articles must not have been previously published or currently submitted for journal publication elsewhere. As an author, you are responsible for understanding and adhering to our submission guidelines. You can access them from http://www.blackwellpublishing.com/submit.asp?ref=0266-4720. Please thoroughly read these before submitting your manuscript. Each paper will go through a rigorous review process.

Please note the following important dates:

  • Submission Deadline: January 1, 2008
  • Completion of First-Round Reviews: April 1, 2008
  • Revised Papers: May 15, 2008
  • Publication Materials Due: June 15, 2008
  • Publication: October 2008

Interested authors should submit digital copies (PDF preferred) of their papers, including all tables, diagrams, and illustrations, to Guest Editor, Dr. Elif Derya Übeyli, by e-mail:
Dr. Elif Derya Übeyli
Electrical & Electronics Engineering Department, TOBB Economics and Technology University
06530 Ankara, TURKEY
Phone: +90 312 2924080
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Contributors are also welcome to contact the Journal's Editor, Dr. Lucia Rapanotti, for further information:
Dr. Lucia Rapanotti
Computing Department, The Open University
Walton Hall, Milton Keynes, MK7 6AA, U.K.
Phone: +44 (0)1908 654125
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Most Popular Now

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...