AI Algorithm Solves Structural Biology Challenges

Determining the 3D shapes of biological molecules is one of the hardest problems in modern biology and medical discovery. Companies and research institutions often spend millions of dollars to determine a molecular structure - and even such massive efforts are frequently unsuccessful.

Using clever, new machine learning techniques, Stanford University PhD students Stephan Eismann and Raphael Townshend, under the guidance of Ron Dror, associate professor of computer science, have developed an approach that overcomes this problem by predicting accurate structures computationally.

Most notably, their approach succeeds even when learning from only a few known structures, making it applicable to the types of molecules whose structures are most difficult to determine experimentally.

Their work is demonstrated in two papers detailing applications for RNA molecules and multi-protein complexes, published in Science on Aug. 27, 2021, and in Proteins in December 2020, respectively. The paper in Science is a collaboration with the Stanford laboratory of Rhiju Das, associate professor of biochemistry.

"Structural biology, which is the study of the shapes of molecules, has this mantra that structure determines function," said Townshend.

The algorithm designed by the researchers predicts accurate molecular structures and, in doing so, can allow scientists to explain how different molecules work, with applications ranging from fundamental biological research to informed drug design practices.

"Proteins are molecular machines that perform all sorts of functions. To execute their functions, proteins often bind to other proteins," said Eismann. "If you know that a pair of proteins is implicated in a disease and you know how they interact in 3D, you can try to target this interaction very specifically with a drug."

Eismann and Townshend are co-lead authors of the Science paper with Stanford postdoctoral scholar Andrew Watkins of the Das lab, and also co-lead authors of the Proteins paper with former Stanford PhD student Nathaniel Thomas.

Designing the algorithm

Instead of specifying what makes a structural prediction more or less accurate, the researchers let the algorithm discover these molecular features for itself. They did this because they found that the conventional technique of providing such knowledge can sway an algorithm in favor of certain features, thus preventing it from finding other informative features.

"The problem with these hand-crafted features in an algorithm is that the algorithm becomes biased towards what the person who picks these features thinks is important, and you might miss some information that you would need to do better," said Eismann.

"The network learned to find fundamental concepts that are key to molecular structure formation, but without explicitly being told to," said Townshend. "The exciting aspect is that the algorithm has clearly recovered things that we knew were important, but it has also recovered characteristics that we didn’t know about before."

Having shown success with proteins, the researchers next applied their algorithm to another class of important biological molecules, RNAs. They tested their algorithm in a series of “RNA Puzzles” from a long-standing competition in their field, and in every case, the tool outperformed all the other puzzle participants and did so without being designed specifically for RNA structures.

Broader applications

The researchers are excited to see where else their approach can be applied, having already had success with protein complexes and RNA molecules.

"Most of the dramatic recent advances in machine learning have required a tremendous amount of data for training. The fact that this method succeeds given very little training data suggests that related methods could address unsolved problems in many fields where data is scarce," said Dror, who is senior author of the Proteins paper and, with Das, co-senior author of the Science paper.

Specifically for structural biology, the team says that they’re only just scratching the surface in terms of scientific progress to be made.

"Once you have this fundamental technology, then you’re increasing your level of understanding another step and can start asking the next set of questions," said Townshend. "For example, you can start designing new molecules and medicines with this kind of information, which is an area that people are very excited about."

Raphael J L Townshend, Stephan Eismann, Andrew M Watkins, Ramya Rangan, Maria Karelina, Rhiju Das, Ron O Dror.
Geometric deep learning of RNA structure.
Science, 2021. doi: 10.1126/science.abe5650

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...